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Analysis of and Techniques for Adaptive Equalization

for Underwater Acoustic Communication

by

Ballard J. S. Blair

Submitted to the Department of Electrical Engineering and Computer Science
on September 2, 2011 in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical and Oceanographic Engineering

Abstract

Underwater wireless communication is quickly becoming a necessity for applications
in ocean science, defense, and homeland security. Acoustics remains the only prac-
tical means of accomplishing long-range communication in the ocean. The acoustic
communication channel is fraught with difficulties including limited available band-
width, long delay-spread, time-variability, and Doppler spreading. These difficulties
reduce the reliability of the communication system and make high data-rate commu-
nication challenging. Adaptive decision feedback equalization is a common method to
compensate for distortions introduced by the underwater acoustic channel. Limited
work has been done thus far to introduce the physics of the underwater channel into
improving and better understanding the operation of a decision feedback equalizer.
This thesis examines how to use physical models to improve the reliability and reduce
the computational complexity of the decision feedback equalizer. The specific topics
covered by this work are: how to handle channel estimation errors for the time varying
channel, how to use angular constraints imposed by the environment into an array
receiver, what happens when there is a mismatch between the true channel order and
the estimated channel order, and why there is a performance difference between the
direct adaptation and channel estimation based methods for computing the equalizer
coefficients. For each of these topics, algorithms are provided that help create a more
robust equalizer with lower computational complexity for the underwater channel.

Thesis Supervisor: James C. Preisig
Title: Associate Scientist, Woods Hole Oceanographic Institution
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Chapter 1

Introduction

Since the dawn of time, people have looked at the surface of the ocean and wondered

what secrets might be hidden in the depths. Born out of this wonder, oceanography

is a science devoted to understanding the mysteries of the seas. Oceanographers have

made many important discoveries that have fundamentally changed our understand-

ing of the world. Technology is a driving force behind many of these underwater

discoveries. One important part of technology, and not coincidentally the focus of

this thesis, is wireless communication. In oceanography, wireless communication is

used to increase portability, simplify deployments, and decrease mission cost.

Acoustic radiation is currently the only practical way to wirelessly transmit in-

formation underwater distances more than a few hundred meters. Wideband electro-

magnetic radiation is common in terrestrial communications but is highly attenuated

after propagating short distances through the ocean: electromagnetic radiation in the

megahertz to gigahertz range (radio frequency or RF radiation) propagates only a few

meters before being attenuated and electromagnetic radiation in the optical range (es-

pecially blue-green light) propagates around a hundred meters. In contrast, acoustic

radiation has relatively low attenuation and can propagate long distances through the

ocean. Acoustics have been used to signal through thousands of kilometers of water

[129] and have been used in virtually every ocean environment [77].

The goal of wireless, acoustic communication is to transmit digital data reli-

ably with minimum data rate and maximum power constraints. There are several
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challenges when communicating acoustically through the underwater channel: inter-

symbol interference (ISI) caused by reverberation [76], limited signal bandwidth due

to frequency dependent absorption [103], and time-variability of the channel [75].

Every ocean environment (i.e. every communication setup) has unique operating pa-

rameters (depth, system geometry, water column chemistry, etc.) so there is no uni-

versal underwater acoustic channel model for system analysis. As a result, underwater

communication systems are often adaptively tuned based on in-situ measurements.

To mitigate channel induced signal distortions, the received signal is filtered in a

structure known as an equalizer. An equalizer produces an estimate of the transmitted

symbol using a weighted combination of the received signal and, in some structures,

past symbol estimates. The metric used to gauge equalizer performance is the average

squared error between the equalizer output and the transmitted data symbol.

Adaptive equalizers were initially designed for the wired telephone channel [62, 63]

using several simplifying assumptions, such as slow time-variation and white observa-

tion noise. These approximations do not generally hold for the underwater acoustic

channel; new thinking is needed to design equalizers that handle the harsh condi-

tions of the underwater channel (e.g. large delay-spread, quickly varying coefficients,

frequency selective fading, etc.) and that are computationally simple enough to be

implemented on real-time systems. Using physical understanding of the underwater

acoustic communication channel this thesis proposes several equalizer improvements

with particular attention toward limiting computational complexity.

1.1 Contributions of this thesis

The goal of this thesis is to analyze past equalizer design assumptions and propose new

algorithms for limiting complexity and improving performance. Specific contributions

toward this goal are:

1. A description of how the physical considerations of the communication channel

affect the structure of the effective noise correlation matrix used in the compu-

tation of the equalizer coefficients.
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The effective noise includes observation noise, sensor noise, and noise from chan-

nel estimation errors. Traditionally, the effective noise correlation matrix has

been approximated using a scaled identity matrix. Chapter 3 shows that the

mean squared error can be reduced by as much as 4 dB using a fully pop-

ulated effective noise correlation matrix and the computational complexity is

reduced by assuming a Toeplitz matrix structure (which also further reduces

mean squared error).

2. Analysis showing the best non-adaptive combination of elements from a multi-

element receiver that reduces computational complexity without sacrificing per-

formance.

In Chapter 4, a set of static beams is found which reduce computational com-

plexity without sacrificing too much performance (at most a decibel or two

degradation in performance). Experimental data reveals that there are some

channel conditions, such as calm seas with a low signal-to-noise ratio where the

non-adaptive beams outperform a fully-adaptive beamspace processor. Data-

driven techniques for determining the appropriate number of beams are ana-

lyzed.

3. An analysis of how fixing the channel model order affects the mean squared error

equalizer performance.

A channel estimate based equalizer requires a fixed number of modeled channel

coefficients. In Chapter 5 it is shown that when the model has a different

number of coefficients than the true channel, equalizer performance is degraded.

A method of improving performance by adjusting the noise correlation matrix

is detailed.

4. A comparison of direct adaptation and channel estimate based equalizer algo-

rithms, showing why the channel estimate based has lower mean squared error

at high SNR.

At high SNR data symbol estimates from channel estimate based equalizers
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have lower mean squared error than estimates from direct adaptation equaliz-

ers. Chapter 6 presents new analysis which explains this effect; (MMSE) equal-

izer coefficients have a shorter correlation window than channel coefficients,

so tracking the equalizer coefficients (i.e. DA equalization) has higher mean

squared error than tracking the channel coefficients (channel estimate based

equalization).

1.2 Related work

This thesis focuses on analysis of the decision feedback equalizer (DFE) for underwater

communication. There are many references which discuss the operation of the DFE in

a variety of contexts, such as [79, 86]. Monsen [64] wrote a seminal paper examining

the effect of DFE equalization on a fading channel where theoretical lower performance

bounds were derived. Qureshi [81] wrote a nice tutorial paper summarizing the work

on adaptive equalization prior to 1985.

The goal of most equalizers is to reduce the squared error between the data symbol

estimate and the true data symbol. There have been several studies examining the

nature of this error. Eletheriou and Falconer [31] examined how recursive least squares

(RLS) tracking error affected DFE performance. They proposed separating the error

into the sum of two parts: one term caused by channel estimation errors due to time

variability and another term caused by noise.

Stojanovic [106] proposed an alternate decomposition of the error term: first into

causal and a-causal parts and then into a channel estimation error part and a noise

part. She postulated if the channel estimation error could be estimated, it could

be combined with the observation noise estimate to create a total (effective) noise

estimate. She and Zvonar extended this research into multi-user equalization in [111].

One form of the MMSE equation for equalizer coefficients is an inverse matrix

multiplied by a column vector. Dzung [27] simplified equalizer error analysis of adap-

tive algorithms by replacing the inverse of the random matrix with the inverse of the

expectation of the random matrix.
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Preisig [75] examined how imperfect channel estimation affected the equalizer

taps. He proposed an estimated error DFE, where the error covariance matrix is

estimated using the received signal, past data symbols, and a channel estimate. His

work showed definitively that the effective error can be modelled as the noise plus a

term which accounts for channel estimation errors.

Building on the work of Eleftheriou and Falconer [31], Nadakuditi and Preisig

[65, 66] presented a more sophisticated separation of the channel estimation error

when using a recursive least squares algorithm. Employing an extended state space

model they provided derivations which related the observed noise correlation matrix to

both the channel and noise correlation matrices. In the same work [65, 66], Nadakuditi

and Preisig presented results the effect of fixing channel model order on channel

estimation errors when using a recursive least squares algorithm.

Stojanovic et al. pioneered the analysis and application of advanced equalization

techniques for the underwater communication [80, 105, 107, 108, 110]. Using ex-

perimental data, she verified that equalization was possible underwater. She also

examined some environmental factors that affect communication, such as noise and

absorption, and derived useful approximations [101, 103].

Preisig et al. also how ocean physics affects underwater communication systems

in [74, 75, 76, 78]. They focused on the effect of time-varying environments (surface

waves) on communication systems and how to compensate for environmental distor-

tions using equalization. One interesting observation was that waves act as a concave

mirrors which focuses the acoustic energy and causes large, fast amplitude changes

at the receiver. Li et al. [60, 59] proposed using the delay-Doppler characterization

of the channel along with sparse techniques to mitigate this effect of these mirrors.

In a seminal work on multichannel, adaptive equalization for underwater com-

munication, Stojanovic et al. [105] found that the optimal multichannel combiner

is a matched filter followed by a maximum likelihood sequence estimator (MLSE).

Since the MLSE is impractical due to the large channel delay spread in underwater

environments (which can span hundreds of symbols), she used an adaptive DFE as

the channel combiner. Using experimental data, she showed that for the underwater
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channel, the mean squared error of the multichannel DFE output is not significantly

greater than the mean squared error of the MLSE output.

The same set of authors showed that when the direction of arrival for all multipath

components is known a multichannel DFE with a beamformer is equivalent to a

multichannel DFE without a beamformer [109]. They further showed that any set

of beam-weights that spans the signal space produces equivalent mean squared error

performance when the observation noise is spatially and temporally white. Using the

multichannel DFE with a beamformer reduced the computational complexity of the

receiver when the number of multipath arrivals was less than the number of sensors.

Using physics-based constraints, the communication receiver can better estimate

the channel and reduce computational complexity by reducing the number of param-

eters to be estimated. Kraay and Baggeroer [50] proposed using physical constraints

for array processing by constraining the signal covariance matrix to be realizable when

the received signal was a sum of narrowband plane waves. Their goal was to reduce

the number of snapshots needed to properly estimate a covariance matrix.

Papp et al. [71, 72] used a different form of physical constraint: mode-filtering.

They showed that mode-filtering improves array signal-processing. They also showed

using experimental data that mode-filtering a signal before equalization had higher

mean squared error than an equalizer with no mode-filter.

LeBlanc and Beaujean [55, 56] proposed applying principle component analysis

(PCA) to acoustic communication systems with receive arrays. To improve equalizer

performance the beams were decorrelating by using the eigenvectors of the received

signal correlation matrix were used as the beamformer weights. They focused mainly

on the decorrelating effects of this technique and not on dimensionality reduction.

Two common methods for computing adaptive equalizer coefficients are direct

adaptation (DA) where the equalizer coefficients are estimated directly from the re-

ceived data and channel estimate based (CEB) where a channel estimate is used to

compute the coefficients. There have been several studies comparing the DA equal-

ization with CEB equalization, but the performance comparisons contained only em-

pirical evidence without analysis. Many authors had hypotheses about the cause of
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the performance difference, but there was no consistency between them.

An often cited work comparing DA and CEB equalizers on a Rayleigh fading

channel is by Shukla et al. [91]. The authors showed that when the channel order

is known and the signal to noise ratio (SNR) is large, the DA approach had higher

mean squared error than the CEB approach.

Fechtel and Meyr [32] also demonstrated a difference in mean squared error (at

high SNR) between DA and CEB equalizers, assuming the CEB equalizer had perfect

channel knowledge. They hypothesized that the difference was due to the lag in the

DA equalizer which implicitly has to estimate the channel state information.

Lee and Cox [58] examined the performance difference between the DA and CEB

methods when the the true channel order was not known. They experimentally

validated that for an unknown channel length the DA method outperformed the

CEB method. They also found that a matrix regularization term was effective to

combat the difference in performance between the two methods. In later work [57]

examined the effect of channel mismatch on the bit error rate (BER) of a maximum

likelihood sequence estimator (MLSE).

An alternative to equalization is time-reversal [33, 85]. In time-reversal techniques,

a channel estimate is convolved with the data signal. The channel is estimated by

sending a pulse through the channel and recording the received signal. This form of

channel estimation is not robust to channel variations. An array is used to either

transmitted or receive (or both) which provides an array gain proportional to the

number of sensors in the array. Time-reversal methods both temporally and spatially

match filter the received signal to increase the effective SNR.

Time-reversal has been shown to be an effective, low-complexity method for han-

dling the difficulties of the underwater channel [46, 47, 85] and has been extended

into multi-user scenarios [95, 96, 97]. Results have been confirmed using experimental

data [28, 40]. After comparing the mean squared error of time-reversal with equal-

ization, the equalizer always had lower mean squared error [128]. An equalizer is

thus generally preferred to time-reversal. Attempts have been made to include both

time-reversal and equalization into one communication system [17, 18, 98].
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There has been increasing interest in combining equalization with error correcting

coding, a technique known as turbo-equalization [26, 49, 117, 118]. The data is first

encoded using an error correcting code and the resulting signal is transmitted through

a channel. The equalizer filters the received signal and, rather than making a symbol

decision, transmits the filtered output directly to the decoder. The raw output of

the equalizer without a symbol decision is known as soft information. A decoder uses

this soft information to refine the transmitted symbol probabilities. The updated soft

information is sent back to the equalizer and the process iterates.

Turbo-equalization has been shown to work well for underwater channel [19, 20,

25, 92]. One issue with turbo-equalization is its computational complexity. There

has been work done to reduce the computational complexity [93, 117], but still more

needed. The techniques presented in this thesis could be applied to the equalizer

portion of a turbo-equalizer to improve performance and reduce computational com-

plexity in underwater environments.

1.3 Organization

The remainder of this thesis is organized as follows: Chapter 2 provides the mathemat-

ical and conceptual background to understand the remainder of the thesis. Chapter 3

describes how channel estimation errors can be accounted for when calculating equal-

izer filter weights. Chapter 4 explains how knowledge of the physically constrained

arrival angles can be incorporated into an array receiver to reduce computational

complexity. Chapter 5 presents analysis of how assumptions of the channel order

affect the equalizer error. Chapter 6 discusses the difference between the CEB and

the DA equalizers. Concluding remarks and areas for future research are identified in

Chapter 7.
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1.4 Notation

Throughout this thesis, the following notation is used:

Symbol Definition

a Non-bold lowercase letters represent scalar constants

a Bold lowercase letters represent column vectors

A Bold uppercase letters represent matrices

∗ Complex conjugate of the variable (i.e. a∗)

T Transpose of a vector or matrix (i.e. AT )

H Hermitian (conjugate transpose) of a vector or matrix (i.e. AH)

‖ · ‖ 2-norm of the enclosed quantity (i.e. ‖a‖)

·̂ Estimate of a quantity (i.e. â)

I Square Identity matrix (context sized)

IM MxM Square Identity Matrix

0 Zero matrix or vector (context sized)

E{·} Expectation of enclosed quantity
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Chapter 2

Background

2.1 Underwater communication

The underwater channel remains one of the most challenging communication environ-

ments. Designing a reliable communication system remains an active area of research.

Knowing where a system is going to be deployed is important when designing under-

water acoustic (UWA) communication system. Communicating vertically through

the ocean tends to be the simplest regime since often there is little multipath. The

name of this environment is the Reliable Acoustic Path (RAP) [24] due to the fidelity

of the channel. Baffles or directional hydrophones are used reduce effects of surface

bounces.

In deep water systems there is less interaction with the surface so the communica-

tion channel is time-invariant, possibly sparse, and widely spread in delay. Modeling

techniques are often employed in deep water channels to determine the locations where

communication is possible due to the channel physics. The direct path is often the

last to arrive in deep water since a natural waveguide exists around the sound-speed

minimum in deep water [42].

In shallow water environments interactions with the time-varying ocean surface

are unavoidable. There are also interactions with the bottom and nearby obstacles

plus noise from waves, shipping traffic, and marine life. When operating in such a

dynamic environment adaptive channel tracking and adaptive equalization techniques
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are essential, such as the exponentially weighted recursive least squares (EW-RLS)

algorithm.

Underwater communication began with the uncoded, analog underwater telephone

or “the Gertrude” which was used to commzunicate with a manned submersible. As

higher data-rates became necessary and the intended receiver was a machine instead of

a person more complex systems were needed. The development of these systems began

in the analog domain, but quickly switched to the digital domain where frequency shift

keying (FSK) and more recently phase shift keying (PSK) (for increased bandwidth

efficiency) are used for data modulation. Many detailed papers have been written

concerning the history of underwater communications such as [5, 14, 15, 16, 45, 110].

The focus of this thesis is on the well-mixed, shallow-water channel where the

isovelocity assumption is appropriate. Data is modulated using phase shift keying

(PSK) techniques since this is the current state of the art. The following subsections

outline some of the difficulties in communicating through the underwater environment

to familiarize the reader and to emphasize that this is a harsh environment that

requires extra effort.

2.1.1 Distance and SNR

The majority of ocean noise can be separated into one of four components: turbulence,

shipping, wind, and thermal noise. Turbulence dominates in the low frequency region

under 10 Hz, shipping noise is dominant in the 10-100 Hz region, wind-driven wave

noise prevails in the 100 Hz -100 kHz, and thermal noise dominates above 100 kHz

[102]. The total noise is the unweighted sum of these four noise components. A

useful approximation of the noise power spectral density (PSD) as a function of the

frequency f in kHz is

10 log10N(f) ≈ N1 − η log10 f. (2.1.1)

The above expression has units dB re µPa per Hz and the constants are N1 = 50 and

η = 18 [102].

Common acoustic communication frequencies are from 100 Hz to 100 kHz, so wind
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driven noise is dominant. With some notable exceptions (e.g. snapping shrimp and

breaking ice), noise in the acoustic communication frequencies is well modeled by a

Gaussian random process [102, 126]. In general, the power spectral density of this

process is not flat, so the noise process is not white.

Attenuation is a function of the acoustic path length l and the frequency of the

signal f [10, 103]

A(l, f) = (l/lr)
ka(f)l−lr , (2.1.2)

where k is the spreading factor (cylindrical, spherical, etc.), a(f) is the absorption

coefficient, and lr is a reference distance. Thorp [115, 116] provided an approximate

expression for the absorption coefficient as a function of frequency which is valid for

frequencies in the range 500 Hz to 50 kHz. Most acoustic communication frequencies

are in this range. The expression for the absorption coefficient is

10 log a(f) = 0.11
f 2

1 + f 2
+ 44

f 2

4100 + f 2
+ 2.75 · 10−4f 2 + 0.003, (2.1.3)

where the quantity 10 log a(f) has units of dB/km and f has units of kHz. For

frequencies lower than 500 Hz, the alternative expression

10 log10 a(f) = 0.11
f 2

1 + f 2
+ 0.011f 2 + 0.002 (2.1.4)

is a better approximation [10, 102]. Fisher and Simmons [34] tied these expressions

to physical and chemical properties of sea water.

Using a narrowband approximation and ignoring any multi-path effects, the SNR

can be approximated as a function of frequency and distance,

SNR(l, f) =
P/A(l, f)

N(f)∆f
=

P

A(l, f)N(f)∆(f)
, (2.1.5)

where ∆f is the bandwidth of the receiver and hence the received noise (narrow-

band approximation) [102]. The frequency dependent portion of this expression is
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Figure 2.1.1: Signal to Noise ratio (narrowband), 1/A(l,f)N(f), as a function of fre-
quency for various ranges.

encompassed in the expression A(l, f)N(f) since P is the total source power across

the available bandwidth. Using a practical spreading coefficient of k = 1.5, Figure

2.1.1 shows the relationship between frequency and SNR, recreated from [102]; both

the optimal center frequency and 3 dB bandwidth are dependent on transmission

range.

Jensen and Kuperman [41] performed a related analysis to find the optimum fre-

quency that balanced the propagation and attenuation mechanisms of the shallow

water channel, but did not account for noise power. The optimum frequency is a

general feature of waveguide or ducting propagation and for shallow water channels is

strongly dependent on depth [42]. Typical optimum frequencies when the water depth

is 100 m are 200-800 Hz, lower than the frequencies found in [102] which included the

noise characterization.
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2.1.2 Delay spread of the channel

As sound travels from the transmitter to the receiver, it follows not only a direct path,

but also additional paths due to reflections from the surface, reflections from the sea

floor, and inhomogeneities in the sound speed profile which cause the refraction of

the sound paths.

The time difference between the first received path and the last is referred to

as the delay-spread of the channel. The delay-spread determines the fastest rate at

which data can be transmitted without inter-symbol interference (ISI). Often the

length of the delay-spread is in units of transmitted symbol durations, the inverse of

the transmitted symbol rate. Delay spreads of tens and hundreds of symbols are not

uncommon in the underwater channel. This is a stark contrast to the radio-frequency

(RF) channel which often has on the order of three symbols of ISI.

The delay-spread of the underwater communications channel is due to the different

paths from the transmitter to receiver. In water shallow enough for an approximately

isovelocity sound speed profile the delay spread induced by the channel is due to

reflections from the sea surface, reflections from the bottom, and reflections from

anything in the water column. These reflections are referred to as macro-multipath

since they are due to macro features in the environment. These features are usually

assumed to be roughly time-invariant over a time-scale that is much larger than the

data signaling rate [100].

The acoustic rays are better modeled as three-dimensional tubes rather than two-

dimensional lines. When the tube encounters an object, the reflections are usually

not point reflections, but are reflections from an area such as a rough patch of sand

or rough sea surface. This causes each ray path to spread in time, sometimes by

as much as a few milliseconds. The multipath due to small scale features such as

surface roughness and random ocean fluctuations is referred to as micro-multipath.

Micro-multipath is non-specular and some components of the small scale random

fluctuations can be modeled statistically [100]. In the acoustics literature, the micro-

multipath concept is also known as ray-tubes [42].
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Figure 2.1.2: Diagram depicting some of the acoustic paths from the transmitter to
the receiver. The black solid lines show the path and the blue cylinder are an example
of the spreading in space that would cause a spread in time at the receiver.

Figure 2.1.2 shows an example of what multipath might look like in a shallow

water environment. The macro-multipath is represented by the different paths (solid

black lines) and the micro-multipath is a cylinder around this line, indicating the

spreading radius.

In a deep water environment, in addition to surface and (less commonly) bottom

bounces, fully refracted paths occur due to a local minimum in the sound speed profile.

Sound tends to “favor” regions with slower sound speed and will bend towards those

regions. There is a region of the ocean known as the Sound Fixing and Ranging

(SOFAR) channel or the deep sound channel where the sound speed is at a minimum.

The ray bending is due to Snell’s law applied to a medium with a continuously

changing sound speed. The deep water channel can have a large time-spread but

may be sparse and is often slowly-varying compared to the time scales of equalizer

adaptation relevant for acoustic communication.

Regions of little acoustic penetration due to system geometry and the sound speed

profile are known as shadow zones. These regions can occur because of obstructions

(e.g. sea mounts) or more importantly because of the waveguide propagation physics.

Shadow zones can form in either the deep or shallow water channels [42, 119]. There is

little signal processing that can be done to correct for shadow zones so compensation

for shadow zones is accomplished through system placement and mission design.
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2.1.3 Doppler, waves, and motion

Each of the transmitter-to-receiver paths experience varying degrees of time-variability

effects due to surface waves, internal waves, platform motion, reflections from moving

objects, and currents and tides. Each source of variability can induce either a Doppler

shift, where all of the frequencies are shifted up or down, or a Doppler spread, where

neighboring frequencies are smeared together. A typical Doppler spread is on the or-

der of 0 to 30 Hz, but depends heavily on the transmit frequency and communication

system parameters (sea surface motion, weather, platform motion, etc.).

Because the speed of sound is much slower than the speed of light, the Doppler

effects observed in the underwater channel tend to be much more severe than in

RF channels. To illustrate the Doppler effect more clearly, consider a pulse, p(t),

modulated with a carrier frequency of fc and transmitted through a sound channel

with constant speed of sound cs to a receiver moving at a constant velocity v with

respect to the transmitter. The propagation delay of the received signal is τ(t) =

τ0 − vt
cs

, where τ0 is a reference delay. The Doppler effect is proportional to a = v/cs.

The transmitted signal, s(t), is [104]

s(t) = Re{p(t)ej2πfct}. (2.1.6)

The signal observed by the receiver is [104]

r(t) = s(t+
vt

cs
− τ0) = s(t+ at− τ0) = Re{p(t+ at− τ0)ej2πfc(t+at−τ)}. (2.1.7)

With respect to the center frequency the baseband receive signal (i.e. the received

signal after demodulation and low pass filtering) is [104]

f(t) = e−j2πfcτp(t+ at− τ)ej2πafct (2.1.8)

Ignoring the phase shift 2πfcτ , there are two signal distortions observed:

1. The signal is dilated in time by a factor of 1+a, i.e. the dilated signal is p′(t) =
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p(t(1 + a)). A dilation the time domain causes a corresponding contraction of

the frequency response.

2. The signal has a frequency offset of afc, which is known as a Doppler shift.

The dilation effect can be ignored when the time-bandwidth of the signal is appro-

priately small. If the bandwidth of p(t) is denoted as Bp, the signal is approximately

time invariant for a time B−1
p . If the data packet has total duration T , then the total

dilation of the packet is vT/cS which must be much less than B−1
p for dilation to be

ignored. Therefore, when the time bandwidth product, TBp, satisfies the relation

TBp �
cs
v

dilation can be ignored; otherwise, the received signal needs to be re-sampled [120].

Another way to characterize the Doppler is through the scattering function. As-

sume that the channel coefficient at a particular time t and delay τ is g(t, τ). If the

channel is known to be wide sense stationary (i.e. the correlation is a function of the

time difference), then the temporal correlation function of the channel is

Rg(∆t; τ1, τ2) = E{g(t, τ1)g∗(t+ ∆t, τ2)}, (2.1.9)

which is a function of three variables: the two delays, τ1 and τ2, and the difference in

time ∆t. The scattering function of the channel is defined as the Fourier transform

of the temporal correlation function,

Sg(λd; τ1, τ2) =

∫ ∞
−∞

Rg(∆t; τ1, τ2)e−j2πλd∆td∆t, (2.1.10)

where λd is the Doppler spreading variable. At a particular delay, τ1 = τ2, this is

an expression of the Doppler spread of the channel. This leads to the relationship

between the coherence time of the channel, (∆t)c, and the Doppler spread, Bd, [79]

(∆t)c ≈
1

Bd

. (2.1.11)
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The coherence time, (∆t)c, i.e. the time over which the channel at a particular delay

is correlated, is approximately the inverse of the Doppler spread of the channel, Bd.

For time-invariant channel (∆t)c =∞, so there is no Doppler spread.

In addition to Doppler effects, there are other channel effects caused by the waves.

For certain geometries, the waves will act as a concave mirror and the focus the

acoustic energy to cause severe but brief changes in the channel magnitude and phase

characteristics [78, 74]. These focusing events cause the path that interacts with the

surface to have a larger magnitude than the direct path and can cause instantaneous

π/4 shifts in phase.

Wave motion can also inject bubbles into the water volume [77]. These create

a highly variable medium for the sound to propagate through and can increase the

absorption coefficient or reduce the effective height of the water column.

2.2 Channel model

An underwater communication systems consists of at least one transmitter and one

receiver. Figure 2.2.1 shows an example setup for an underwater acoustic experiment.

 ~ 0.1-100 km

~1-100 m

Figure 2.2.1: Possible setup for acoustic model being studied in this thesis.

Received signals are assumed to be sampled at baseband, so the analysis and

processing are done in discrete time with complex valued signals. The acoustic channel

is modeled with a finite extent, linear, time-varying impulse response plus additive
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noise [79, 120]. The received signal sample at time n, u[n], can be written as [75]

u[n] =
Nc−1∑
k=−Na

g∗[n, k]d[n− k] + ν[n], (2.2.1)

where d[n] is the transmitted data, ν[n] is complex, baseband noise, and g[n, k] is the

complex, baseband channel impulse response equating the input data at time n − k

to the output data at time n. The channel includes the transmit and receive filtering

effects in addition to the physical propagation effects. The channel is assumed to

have Nc causal coefficients and Na acausal coefficients, where the center (zero offset)

coefficient is assumed to correspond to the center of the direct arrival. This definition

is particular to the isovelocity channel; in other environments the direct arrival may

not be the first causal arrival (e.g. the direct arrival is the last arrival for the SOFAR

channel). Eq. (2.2.1) can be written more compactly as

u[n] = gH [n]d′[n] + ν[n], (2.2.2)

with

g[n] = [g[n,Nc − 1] . . . g[n, 0] . . . g[n,−Na]]
T (2.2.3)

and

d′[n] = [d[n−Nc + 1] . . . d[n] . . . d[n+Na]]
T . (2.2.4)

Stacking successive received signal samples, eq. (2.2.2) becomes a matrix-vector equa-

tion,

u[n] = GH [n]d[n] + ν[n], (2.2.5)

where u[n] is a vector of sampled received data, d[n] is the transmitted data, ν[n] is
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the sampled noise vector, and G[n] is the channel convolution matrix. Specifically,

u[n] = [u[n− Lc + 1] . . . u[n] . . . u[n+ La]]
T (2.2.6)

d[n] = [d[n− Lc −Nc + 2] . . . d[n+ La +Na]]
T (2.2.7)

ν[n] = [ν[n− Lc + 1] . . . ν[n] . . . ν[n+ La]]
T (2.2.8)

G[n] =


g[n− Lc + 1,−Nc + 1] 0 · · · 0

g[n− Lc + 1,−Nc + 2] g[n− Lc + 2,−Nc + 1] · · · 0
...

. . .
...

0 0 · · · g[n+ LaNa]


=

[
g′−Lc+1[n− Lc + 1] · · · g′La [n+ La]

]
, (2.2.9)

where La and Lc are the number of acausal and causal feedforward equalizer taps

in each feedforward section of a decision feedback equalizer. The transmitted data

symbols are assumed to be drawn from a zero-mean random-process with variance

σ2
d. The noise and transmitted data correlation matrices are defined as

Rν , E{ν[n]νH [n]} (2.2.10)

Rd , E{d[n]dH [n]} = σ2
dI = I. (2.2.11)

The last equality for Rd highlights an assumption used for the remainder of this

thesis (unless otherwise noted) that the transmitted data symbols are white with

unit energy, i.e. σ2
d = 1.

Each of the columns of the matrix G[n], denoted above as g′i[m], is the channel

impulse response vector at time m, g[m], padded with zeros so the matrix multiplica-

tion GH [n]d[n] is equivalent to the convolution of the channel impulse response with

the transmitted data from eq. (2.2.1).

To handle fractionally spaced sampling (more than one sample per symbol), the

number of rows of G[n] is increased proportional to the fractional sampling rate

(number of samples per symbol). The length of the noise and received data vec-

tors is increased accordingly. The length of the transmitted symbol vector remains
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unchanged. Except when noted, symbol rate sampling is assumed for notational sim-

plicity; it is straightforward to extend the results to handle fractional-rate sample

spacing.

2.3 Least-squares estimation

2.3.1 Setup

Many problems from signal processing, communications, and control have a similar

form: estimate the vector w when the statistics of the random vector x and random

variable y are known, ν is random noise, and

y = wHx + ν,

Since the noise is random it is not possible to estimate w exactly so a metric is needed

to determine the quality of the estimate. An extremely common metric is the mean

squared error metric which is the expected absolute difference squared between y and

yest = wH
estx where west is the estimate of w. The minimization problem using this

metric is

wMMSE = arg min
west

E{
∣∣y −wH

estx
∣∣2}. (2.3.1)

The solution to this minimization problem is the minimum mean squared error

(MMSE) solution

wMMSE = E{xxH}−1
E{xy∗} = R−1

x rxy = Prxy, (2.3.2)

where Rx = E{xxH}, rxy = E{xy∗}, and P = R−1
x . Assuming both x and y are

zero-mean, this solution provides the unbiased estimate of the parameter vector w

with the minimum mean squared error. The solution can be modified to handle the

non-zero mean case as well. In the communication context, the MMSE problem setup

is used for channel estimation and for equalizer coefficient estimation.

When the statistics of x and y are not known, but there are observations available
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(i.e. x1, y1, x2, y2, · · · , xN, yN), the observed data can be arranged as

X =


xH1

xH2
...

xHN

 y =


y1

y2

...

yN

 ,

and least squares methods can then be used. The least squares problem is related to

the MMSE and has a very similar form. In the least squares problem, a vector w is

sought which solves

Xw = y.

When the known matrix X is tall, i.e. has more rows than columns, usually there is

no exact solution. A tall matrix also indicates there are more observations y than

parameters w. The least squares estimate minimizes the squared error between Ax

and y,

ŵLS = arg min
w

|y −Xw|2 . (2.3.3)

The solution to this minimization problem is

ŵLS =
(
XHX

)−1
XHy = X†y. (2.3.4)

The quantity X† =
(
XHX

)−1
XH is the Moore-Penrose pseudo-inverse of the matrix

X. If the random variables x and y are Gaussian distributed, the least squares solution

is the maximum likelihood solution.

The MMSE framework can also be used to estimate w for a random vector y and

random matrix X which are related by

y = wHX + ν,

where ν is a vector of random noise. Using the mean squared error cost function, the

43



minimization problem in this case is

wMMSE = arg min
west

E{
∣∣y −wH

estX
∣∣2}. (2.3.5)

and the solution is

wMMSE = E{XXH}−1
E{Xy∗}. (2.3.6)

Notice that eq. (2.3.6) has the same form as eq. (2.3.2) with the matrix X and vector

y from eq. (2.3.6) replacing the vector x and scalar y in eq. (2.3.2).

In many situations, one will have a least-squares solution and new data will arrive

(e.g. xN+1). Given a new observation, the new least squares solution which incorpo-

rates the new data can be computed efficiently without recomputing the whole solu-

tion. One particularly effective method for computing a data-recursive least-squares

solution is the recursive-least-squares (RLS) algorithm.

2.3.2 Recursive least squares (RLS) filtering algorithm

The statistics of the underwater channel are often not available and there is not yet

an agreed upon model of the time variation of the underwater acoustic communica-

tion channel. The underwater channel is often assumed to be varying “reasonably”

slowly so that the time-varying channel impulse response coefficients can be tracked.

This assumption enables the use of the exponentially weighted recursive least-squares

(EW-RLS) algorithm for estimating the channel or equalizer coefficients. This algo-

rithm is a balance between computational complexity and effectiveness since it can

track a time-varying channel effectively with reasonable complexity, O(N2), where

the quantity of interest has N parameters (either the channel impulse response or the

equalizer coefficients). The notation O(·) refers to the highest order of the computa-

tion complexity.

The EW-RLS algorithm provides an effective way to estimate the ensemble ex-

pectations in the solution to the LSE equalizer equations. This section briefly covers

the algorithm with a quick derivation and a focus on the practical details for the
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underwater channel. For more of the algorithmic details, Haykin [36] and Sayed [86]

are excellent resources.

The EW-RLS algorithm approximates the expectations in the MMSE solution

with time-averaged functions of the data,

R̂x[n] = P̂
−1

=
n∑
i=0

λn−ix[i]x[i]H + δλn+1I (2.3.7)

r̂xy[n] =
n∑
i=0

λn−ix[i]y[i]∗. (2.3.8)

In these equations, λ is the exponential weighting factor, 0 < λ < 1. The term δλNI

is added to the denominator term for regularization so the algorithm is initially well

behaved (δ is a system design parameter). This algorithm provides a computationally

efficient data-recursive method for updating the parameter estimates [36]. When a

new values x[n] and y[n] are received, the RLS algorithm for updating the estimates

ŵ[n− 1] and P̂[n− 1] is

ŵ[0] = 0 (2.3.9)

P̂[0] = δ−1I (2.3.10)

π[n] = P̂[n− 1]x[n] (2.3.11)

k[n] =
π[n]

λ+ xH [n]π[n]
(2.3.12)

ζ[n] = y[n]− ŵH [n− 1]x[n] (2.3.13)

ŵ[n] = ŵ[n− 1] + k[n]ζ∗[n] (2.3.14)

P̂[n] = (I− k[n]xH [n])λ−1P̂[n− 1]. (2.3.15)

The value of exponential weighting factor determines the size of the data averaging

window or memory of the algorithm. The memory of the algorithm is approximately

1
1−λ [29]. A common rule of thumb for the underwater channel is that the algorithm

memory should be approximately two to three times the number of coefficients being

estimated. For example, when estimating a channel that spans 100 symbols, λ ≈ 0.995

for a window of twice the channel length.
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The EW-RLS has been shown to converge to the Weiner solution asymptotically

when the coefficients, w[n], are time-invariant and λ→ 1 [21]. The cost function that

is actually being solved using the EW-RLS algorithm,

ŵ[n] = arg min
w

[
λn+1 δ wHw +

n∑
i=0

λn−i
∣∣∣y[i]−wHx[i]

∣∣∣2] , (2.3.16)

is slightly different from the cost function for the MMSE estimation problem [86].

The EW-RLS algorithm can also be written as a constrained form of the Kalman

filter [87, 88].

2.4 Equalization

An equalizer is a structure used to mitigate ISI and channel distortions in the received

signal. This thesis focuses on two particular types of equalizers: the linear equalizer

(LE) and the decision feedback equalizer (DFE). The coefficients for both of these

equalizer structures can be found using a least-squares type of optimization criterion.

The output of the equalizer filter is an estimate of the transmitted symbol,

d̃[n] = hH [n]z[n]. (2.4.1)

The vector z[n] either contains only received signal samples (for the LE) or received

signal samples and estimates of past data symbols (for the DFE). An example of both

the LE and the DFE are shown in Figure 2.4.1.

The cost function which is minimized to find the equalizer coefficients is

J(h) = E{|hHz− d|2}, (2.4.2)

and the optimization problem to find the MMSE equalizer coefficients, ĥopt[n], is

represented as

hopt = arg min
h̃

E{|h̃Hz− d|2}. (2.4.3)
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Figure 2.4.1: Illustration of the (a) linear equalizer and (b) decision feedback equalizer
with the quantities h and z labeled.

The solution to this minimization is

hopt[n] = Rz
−1[n]rzd[n], (2.4.4)

where Rz[n] = E{zzH} and rzd = E{zd∗}. Solving for the equalizer by directly

estimating Rz and rzd from the received signal and possible past data estimates is

referred to as Direct Adaptation equalization (DA). Assuming the expectations are

conditioned on a known channel, eq. (2.2.5) can be substituted into eq. (2.4.4) to

reduce the solution to a function of the channel impulse response values and the noise

statistics. This method is referred to as the channel estimate based (CEB) method

of equalization. In the following subsections, the coefficients for the DA and CEB

methods of both the LE and DFE are derived.

2.4.1 Linear equalizer (LE)

The linear equalizer uses a linear combination of the received signal samples to create

an estimate of the transmitted symbol. This structure tends to have low compu-

tational complexity, so is often used in computation limited environments such as

embedded systems. The LE algorithm is a natural place to start theoretical deriva-

tions due to its simple form.

The performance of the LE algorithm suffers when there are nulls in the channel

frequency response [36]. The LE algorithm attempts to invert the nulls, and in doing

so greatly amplifies the noise power at the nulls which degrades equalizer performance.
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This behavior makes the LE algorithm less than ideal for frequency selective channels.

The coefficients of the LE can be found using eq. (2.4.1) by setting z[n] equal to

the vector of received signal samples, u[n],

z[n] = [u[n− Lc + 1] . . . u[n] . . . u[n+ La]]
T = u[n]. (2.4.5)

The number of equalizer coefficients is (La + Lc)rfs where La and Lc are the number

of acausal and causal equalizer taps respectively and rfs is the number of samples

per symbol (the fractional sampling rate). Substituting the expression for z[n] from

eq. (2.4.5) into eq. (2.4.4) produces the expression for the LE coefficients,

hopt = hlin = E{u[n]uH [n]}−1
E{u[n]d∗[n]}. (2.4.6)

In this equation, Ru = E{u[n]uH [n]} is the received signal autocorrelation matrix

and rud = E{u[n]d∗[n]} is the cross correlation vector between the received-signal and

the transmitted-symbol. When the statistics are not known, the expectations must

be estimated form the available data. Using an exponentially weighted window, the

estimates of these quantities are of the form

R̂u[n] = δnI +
n∑
i=0

λn−iu[i]uH [i] (2.4.7)

r̂ud[n] =
n∑
i=0

λn−iu[i]d∗[i], (2.4.8)

where λ is the exponential weighting factor. The regularization term, δnI, is included

to ensure the matrix is well conditioned. Using the estimated autocorrelation matrix

and cross-correlation vector is the DA method of linear equalization. The EW-RLS

algorithm provides an computationally efficient, data-recursive method for updating

the equalizer coefficients.

An alternative to using these estimated quantities is to use the channel model from

eq. (2.2.5). The expectation in eq. (2.4.6) can be evaluated conditioned on knowing

48



the true channel, i.e.

hopt = hlin = E{u[n]uH [n]|G[n]}−1
E{u[n]d∗[n]|G[n]}.

Conditioning on the known channel coefficients will be implicit for the remainder of

the thesis and not explicitly included in the expectation terms for brevity. Using the

channel model from eq. (2.2.5) in eq. (2.4.6), the expression for the LE coefficients

becomes

hlin[n] = [GH [n]G[n] + Rν ]−1GH [n]s. (2.4.9)

In the above relation, s is a selection vector, the same length as d[n], that selects the

row of the channel convolution matrix, G[n], corresponding to the data symbol being

estimated. This row is referenced using the symbol g∗0[n]. The selection vector is

s = [0 0 . . . 1 . . . 0 0]T , where the 1 is located at the symbol being estimated, d[n],

in the transmitted symbol vector d[n].

One rarely has access to the true channel impulse response coefficients, and so the

channel is estimate from the received data. When a channel estimate, Ĝ[n] is used

in place of the true channel to compute the equalizer coefficients, this is the CEB

method of linear equalization.

The error in estimating the transmitted data after equalization, eLE[n], is referred

to as the soft decision error (SDE),

eLE[n] = hlin
Hu− d. (2.4.10)

The mean squared error (MSE) is the expectation square of the absolute value of the

SDE,

MSE = E{|eLE[n]|2}. (2.4.11)

The term MSE will also be used to refer to the time averaged observed squared error
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Figure 2.4.2: Schematic representation of LE methods: (a) Direct Adaptation
(b) Channel Estimate Based

where the expectation is replaced with an empirical average,

M̂SE =
1

M

M∑
m=1

|eLE[m]|2.

The minimum achievable error (MAE) is found by substituting eq. (2.2.5) and

eq. (2.4.9) into eq. (2.4.11). The expression for the MAE is

MAE = σ2
0,lin[n] = 1− gT0 [n][GH [n]G[n] + Rν ]−1g∗0[n]. (2.4.12)

2.4.2 Decision feedback equalizer (DFE)

A DFE consists of two linear filters working in concert: a feedforward section that fil-

ters the received signal and a feedback section that filters past data symbol estimates.

The purpose of the feedforward filter is to collect energy and shape the response of

the received signal. The feedback filter is used to cancel causal ISI by removing inter-
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ference from past received data symbols from the received signal. By removing the

causal ISI, the feedback filter increases the effective signal-to-interference-plus-noise

ratio (SINR). This is one reason a DFE outperforms a LE. The sum of output of the

feedforward ad feedback filters gives an estimate of the transmitted symbol. Proakis

[79] and Qureshi [81] are good references for an overview of the DFE algorithm.

The feedforward and feedback equalizer coefficients are labelled respectively as hff

and hfb. For the DFE, z[n] and h[n] from eq. (2.4.4) are defined as

z[n] =
[
u[n− Lc+ 1] . . . u[n+ La], d̂[n− 1] . . . d̂[n− Lfb]

]T
(2.4.13)

h[n] =

hff [n]

hfb[n]

 , (2.4.14)

where d̂[m] is the estimated transmitted data at time m and Lfb is the number of

feedback equalizer coefficients. Using the above definitions for z and h in eq. (2.4.9),

the optimal DFE coefficients are

hDFE =

hff [n]

hfb[n]

 = E{zzH}−1
E{zd∗}, (2.4.15)

where Rz = E{z[n]zH [n]} is the autocorrelation matrix of z[n] and rzd = E{z[n]d∗[n]}

is the cross-correlation vector between elements of z[n] and the transmitted data

symbol. Using an exponentially weighted window, the estimates of these quantities

are of the form

R̂z[n] = δnI +
n∑
i=0

λn−iz[i]zH [i] (2.4.16)

r̂zd[n] =
n∑
i=0

λn−iz[i]d∗[i] (2.4.17)

where λ is again the exponential weighting factor. When the estimated auto-correlation

matrix and cross-correlation vector is used, this is known as the DA-DFE algorithm.

In a DFE, previously estimated transmitted data symbols are used to estimate
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the current symbol. The rows of the channel convolution matrix, G[n], corresponding

to the symbols that are used in the feedback stage of the DFE are assembled into a

new matrix, labeled Gfb[n]. Rows corresponding to symbols not used in the feedback

portion are placed in a matrix G0[n], referred to as the reduced channel convolution

matrix. If all of the previously estimated symbols are used in the feedback stage, the

channel convolution matrix can be separated as

G[n] =

Gfb[n]

G0[n]

 . (2.4.18)

Other matrices are introduced which have the same dimensions as the channel

convolution matrix. These matrices will typically be added to the channel convolution

matrix during different derivations. To simplify notation, the subscript ‘fb’ will refer

to columns of these matrices in the same positions as the columns of the channel

convolution matrix which correspond to symbols which are used in for feedback. The

subscript ‘0’ will refer to the reduced matrix comprised of the remaining columns.

The channel model from eq. (2.2.5) can be used to create an alternative to the

estimate from eq. (2.4.15). Using the separation of the channel convolution matrix in

eq. (2.4.18), the channel model becomes

u[n] = GH [n]d[n] + ν[n] = GH
0 [n]d0[n] + GH

fb[n]dfb[n] + ν[n], (2.4.19)

where dfb[n] correspond to the transmitted symbol positions used in the feedback

section. The remainder of the symbols from d[n] are assembled in d0[n]. The DFE

coefficients can be expressed as a function of the channel coefficients by substituting

eq. (2.4.19) into eq. (2.4.15). The expressions for the feed forward and feedback

coefficients are [75]

hff [n] = [GH
0 [n]G0[n] + Rν ]−1GH [n]s (2.4.20)

hfb[n] = −GH
fb[n]hff [n]. (2.4.21)
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Figure 2.4.3: Schematic representation of DFE methods: (a) Direct Adaptation
(b) Channel Estimate Based

The CEB method for estimating the DFE coefficients involves using channel es-

timates to build the channel convolution matrices in eq. (2.4.20). Figure 2.4.3 shows

both the DA and the CEB forms of the DFE. For the DFE the soft decision error is

eDFE[n] = hHDFE[n]z[n]− d[n] = hff
H [n]u[n] + hfb

H [n]d̂fb[n]− d[n]. (2.4.22)

Given g0[n] = GH [n]s, the MAE is

σ2
0,dfe[n] = E{|eDFE[n]|2} = 1− gT0 [n][GH

0 [n]G0[n] + Rν ]−1g∗0[n], (2.4.23)

The MAE is usually not achieved when the channel is unknown and must be

estimated. In this case, the MSE is

MSE = E{|eDFE[n]|2}.
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Since the statistics of the error are generally not known, they must be estimated from

the data. The averaged observed error,

M̂SE =
1

M

M∑
m=1

|eDFE[n]|2,

is also referred to as the MSE.

The MAE of the LE with the MAE of the DFE can be compared by substituting

the channel convolution matrix from eq. (2.4.19) into eq. (2.4.12), which gives the

expression (time indexes dropped for clarity)

σ2
0,lin = 1− sHG[GH

0 G0 + GH
fbGfb + Rν ]−1GHs (2.4.24)

= σ2
0,dfe + hHff [I + WQ−1]−1Whff . (2.4.25)

In this relation, W = GH
fbGfb, Q = GH

0 G0 + Rν , and hff is eq. (2.4.20). Both Rν

and GH
0 G0 are Hermitian and positive-definite (assuming G0 6= 0), so Q is positive

definite. W is a positive semi-definite matrix equal to zero when Gfb = 0.

hHff [I + WQ−1]−1Whff ≥ 0.

Thus, the MAE of the DFE is always less than the MAE of the LE, except when

either Gfb = 0 or the feedforward equalizer coefficients are in the null space of Gfb,

which is not common.
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2.5 Channel estimation

The underwater channel is well modeled by a finite number of linear coefficients.

When all of the statistics of the transmitted and received data are known, these

coefficients can be estimated using (linear) MMSE methods. Assuming the channel

coefficients are time invariant, the MMSE channel coefficients are a solution to the

optimization problem

gopt = arg min
g

E{|gHd[n]− u[n]|2}, (2.5.1)

where d[n] is a vector of transmitted data, u[n] is the received data, and g are the

channel coefficients. The solution to this optimization has the form

gMMSE = R−1
d rdu, (2.5.2)

where

Rd = E{d[n]dH [n]} (2.5.3)

rdu = E{d[n]u∗[n]}. (2.5.4)

In practice, the statistics of the transmitted and received data are not known

fully and must be estimated. A method known as least squared error (LSE) channel

estimation is often used. In this method the true expectations are replaced with

the observed time-averages. As the number of samples increases, the time-averages

will converge to the true solution. Therefore, when the channel is time-invariant and

a sufficient number of channel observations are available, MMSE and LSE channel

estimation are practically equivalent.

After N symbols have been received, the LSE channel estimate has the form

ĝLSE = R̂
−1

d r̂du, (2.5.5)
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where

R̂d =
1

N

N∑
i=1

d[i]dH [i] (2.5.6)

r̂du =
1

N

N∑
i=1

d[i]u∗[i]. (2.5.7)

Using an EW-RLS algorithm, the estimates are

R̂d = δNI
N∑
i=1

λN−id[i]dH [i] (2.5.8)

r̂du =
N∑
i=1

λN−id[i]u∗[i]. (2.5.9)

Scaling factors common to both estimates are not included here since they will even-

tually cancel out.

Both the MMSE and LSE channel estimators are unbiased. Under the assumption

that the noise is zero-mean, the estimate of the channel is also unbiased, even if the

number of coefficients in the model differs from the number of channel coefficients in

the true channel.

For example, consider the following scenario: the true channel has N coefficients

in length and the modeled channel estimator only contains N − 1 coefficients. The

true channel is unknown and time-invariant. If the true channel is written as

g[n] = [g[n, 0] . . . g[n,N − 1]]T ,

the truncated channel is

g′[n] = [g[n, 0] . . . g[n,N − 2]]T ,

and the truncated transmitted data vector is

d′[n] = [d[n−N + 2] . . . d[n]].
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Using the linear model from eq. (2.2.2) the channel estimate is

greduced[n] = R−1
d′ rd′u

= E{d′[n]d′H [n]}−1
E{d′[n]u∗[n]}

= I−1
N−1E{d′[n](gH [n]d[n] + ν[n])∗}

= E{d′[n]dH [n]g[n]}+ E{d′[n]ν∗[n]}

=

 IN−1 0N−1×1

01×N−1 0

g[n] + 0

= g′[n] (2.5.10)

Therefore, the channel estimate is unbiased (for the modeled parameters) even when

the number of channel coefficients in the model differs from the number of channel

coefficients in the true channel.

2.6 Summary

In this chapter, topics included difficulties of the underwater channel, linear estima-

tion, equalization, and channel modeling. The remainder of this thesis focuses on the

DFE where the coefficients are calculated from the data using an EW-RLS algorithm.

Effects that are specific to the underwater channel are used to examine and improve

the performance of the DFE for underwater channels.
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Chapter 3

Effective noise correlation matrix:

Equalizer improvements through a

structured matrix

3.1 Introduction

Often overlooked in the CEB-DFE formulation is there are two quantities needed to

calculate the equalizer coefficients: an estimate of the channel impulse response and an

estimate of the effective noise correlation matrix [81]. The effective noise includes both

the observation noise and terms due to channel modeling errors. This effective noise

correlation matrix is usually approximated as a scaled identity matrix with a scaling

equal to the inverse signal to noise ratio (SNR). [79, 91]. For the underwater channel,

this turns out to be a poor estimate. Preisig [75] demonstrated theoretically and

experimentally that using a full estimate of the effective noise correlation matrix for

computing the equalizer coefficients reduces the mean squared error after equalization.

In a shallow water communication channel, neighboring channel impulse response

coefficients often exhibit correlated fluctuation [103]. Figure 3.1.1 shows an example

of a measured time-varying impulse response from the surface processes and acous-

tic communication experiment (SPACE08) in 2008. Notice that the amplitudes of
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Figure 3.1.1: The magnitude of an estimated channel impulse response at 1 km from
the transmitter (SPACE08 experiment).

neighboring channel coefficients rise and fall together in time.

The work presented in this chapter shows that correlated fluctuations are respon-

sible for the effective noise correlation matrix having a non-diagonal structure. The

correlation matrix is shown to be well approximated by a Toeplitz matrix, which leads

to a computationally efficient algorithm for computing the DFE filter coefficients.

3.2 Channel estimate based DFE

The DFE is widely used in the underwater environment because it is a computation-

ally tractable way to mitigate channel effects [110]. Recall from Section 2.4 that the

coefficients of the decision feedback equalizer have the form

hff [n] = (GH
0 [n]G0[n] + σ−2

d Rv)−1g0 (3.2.1)

hfb[n] = −GH
fb[n]hff [n]. (3.2.2)

Figure 3.2.1 shows a block diagram of the structure of the CEB-DFE, where estimates

of the channel are used in place of the true (unknown) channel.

For terrestrial RF communication systems, the observation noise, ν[n], is assumed
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Figure 3.2.1: Illustration of the structure of a CEB-DFE.

to be a stationary, zero-mean, white noise process with variance σ2
ν [79]. This implies

that the observation noise correlation matrix, σ−2
d Rν is a scaled identity matrix [91],

such that Rv = ρI, where ρ is defined as the inverse SNR,

ρ =
σ2
ν

σ2
d

. (3.2.3)

3.3 Structure of the effective noise correlation ma-

trix

In underwater communication systems the channel coefficients are rarely known a-

priori and must be estimated from the received data. Due to observation noise and

the time-variability of the channel, the estimate of the channel usually contains some

error. This estimation error can be represented as

G[n] = Ĝ[n− 1] + Γ[n], (3.3.1)

where Ĝ[n− 1] is the estimate of the channel convolution matrix using data up until

time n− 1 and Γ[n] is the error in the estimate. Using this model, the received data
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vector can be rewritten as

u[n] = GH [n]d[n] + ν[n]

= ĜH [n− 1]d[n] + ΓH [n]d[n] + ν[n]

= ĜH [n− 1]d[n] + µ[n], (3.3.2)

where µ[n] is the effective noise,

µ[n] = ΓH [n]d[n] + ν[n]. (3.3.3)

The first term in the effective noise includes noise due to channel estimation errors

and the second term is the observation noise.

In much of the literature on equalization the effective noise is modeled as a scaled

identity matrix. Preisig [75] demonstrated that the performance of a DFE can be

greatly improved by calculating the equalizer coefficients using an estimate of the

correlation matrix of the effective noise computed from the signal estimation residual

error. Assuming that the transmitted data symbols are IID with variance σ2
d, the

effective noise correlation matrix, Rµ, is

Rµ[n] = E{µ[n]µH [n]}

= E{(ΓH [n]d[n] + ν[n])(ΓH [n]d[n] + ν[n])H}

= σ2
dRΓ[n] + Rν [n], (3.3.4)

where

RΓ[n] = E{ΓH [n]Γ[n]} (3.3.5)

is the channel estimation error correlation matrix.

When the MMSE channel estimate is used, the error is zero-mean and uncorrelated

with the estimator. The feedforward and feedback DFE equalizer coefficients can be
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written as

ĥff [n] = (ĜH
0 [n− 1]Ĝ0[n− 1] + RΓ[n] + σ−2

d Rv[n])−1g0

ĥfb[n] = −ĜH
fb[n− 1]ĥff [n]. (3.3.6)

The errors for the entire channel convolution matrix are contained in RΓ, so the effect

of channel estimation errors in the feedback equalizer coefficients are contained in the

term hff .

The feedback equalizer coefficients have the same form as before with the estimate

used in place of the true channel coefficients. An additional term has appeared in the

feedforward equalizer coefficients that is a product of the channel convolution matrix

error terms. The next section analyzes the structure of the channel convolution error

matrix and explains why there are off-diagonal terms in the underwater channel.

3.4 Why there are off-diagonal terms in the effec-

tive noise correlation matrix

In much of the equalization literature the effective noise correlation matrix is modeled

as a scaled identity matrix, where the scaling is (approximately) the inverse SNR. In

underwater communication systems, the mean squared error of the estimated data

symbols after DFE equalization is increased by using this approximation [75]. The

physical cause of the off-diagonal terms has not previously been shown. In this section,

statistical analysis is provided which indicates that the off-diagonal terms are caused

by correlated fluctuations of neighboring channel impulse response coefficients.

3.4.1 Using the Markov channel model for noise analysis

To obtain analytical results, the dynamics of the channel impulse response coefficients

are assumed to follow a first-order Markov model,

g[n+ 1] = αg[n] + υ[n+ 1], (3.4.1)
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where α is a scalar model parameter with |α| < 1 and all vectors are N × 1, where

N = Na + Nc is the channel length (as defined in Section 2.2). The process noise

vector, υ[n], has a correlation matrix defined as

Rυ = E{υ[n]υH [n]}.

When analyzing the structure of the effective noise correlation matrix, two types

of error can be defined: the effective noise, µ[n], and the channel estimation error, γ.

Recall that the effective noise, µ[n], is the difference between the actual received

signal and estimate of the received signal using a channel estimate based upon data

up to and including time n− 1,

µ[n] = u[n]− û[n]

= u[n]− ĝH [n− 1]d′[n]. (3.4.2)

In the literature, the effective noise is also known as the received data prediction error

[66] since the channel model can be thought of as a prediction filter. The channel

estimate, ĝH [n−1], is found using an EW-RLS estimation algorithm. The time index

of the channel estimate is [n− 1] since only transmitted symbols up until time n− 1

is used in the channel estimate.

Using the channel model from eq. (2.2.2),

u[n] = gH [n]d′[n] + ν[n],

the effective noise eq. (3.4.2) can be rewritten as

µ[n] = gH [n]d′[n] + v[n]− ĝH [n− 1]d′[n]

= (g[n]− ĝ[n− 1])Hd′[n] + ν[n]

= γH [n]d′[n] + ν[n]. (3.4.3)
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The term, γ[n] is the a priori channel estimation error,

γ[n] = g[n]− ĝ[n− 1]. (3.4.4)

Nadakuditi and Preisig [65, 66, 75] noted that the channel coefficients and channel

estimation error could be modeled using an extended state space model,g[n]

γ[n]

 =

 αI 0

(α− 1)I I− k̂[n− 1]dH [n− 1]

g[n− 1]

γ[n− 1]


+

 ν[n]

ν[n]− k̂[n− 1]υ[n]

 . (3.4.5)

The adaptation gain vector, k̂[n], is defined as

k̂[n] =

(
n∑
i=1

λn−id[i]dH [i]

)−1

d[n] 0 ≤ λ ≤ 1. (3.4.6)

Using direct averaging methods [51], the channel estimation error correlation ma-

trix, Rγ , can be approximated as [65, 66]

Rγ ≈ E{R̂γ} = E{γ[n]γH [n]}

= χ(α, λ)Rυ + β(λ)ρI. (3.4.7)

In these calculations, the observation noise and transmitted data symbols are both

assumed to be white with variance σ2
ν and σ2

d respectively. The symbol ρ is the inverse

SNR, ρ = σ2
ν/σ

2
d, as in the previous section. The scaling parameters χ(α, λ) and β(λ)

are [66]

χ(α, λ) =
(1− αλ)(1− α∗) + (1− α∗λ)(1− α)

(1− |α|2)(1 + λ)(1− αλ)(1− α∗λ)
(3.4.8)

β(λ) =
(1− λ)

(1 + λ)
. (3.4.9)

The channel estimation error correlation matrix from eq. (3.4.7) is the sum of two
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quantities: χ(α, λ)Rυ and β(λ)ρI. The first quantity, χ(α, λ)Rυ, is the part of the

channel estimation error caused by the time-variability of the channel. This error

is sometimes called lag-error [31]. The second quantity, β(λ)ρI, is the part of the

channel estimation error due to the observation noise. For a time-invariant channel,

only the second component is present.

Assuming white observation noise, the second quantity in the sum from eq. (3.4.7)

is diagonal so the off-diagonal elements must come from the first quantity of the

sum, χ(α, λ)Rυ. Experimentally, the channel estimation errors tend to dominate the

observation noise for the observed range of SNR, so the first quantity in the sum from

eq. (3.4.7) is dominant even when the noise is not white. Since, χ(α, λ) is a scaling, the

channel process noise correlation matrix, Rυ must contain diagonal elements caused

by correlation between channel process noise coefficients. The off-diagonal elements

in Rγ are caused by correlations in the channel coefficient process noise. In the next

section, this observation is used to show that the off-diagonal elements in the effective

noise correlation matrix are caused by correlated changes in the channel coefficients.

3.4.2 Structure of effective noise correlation matrix using

Markov channel update model

The effective noise components, µ[n] from eq. (3.4.2) can be stacked into a vector,

µ[n] =
[
µ[n+Na] · · · µ[n] · · · µ[n−Nc + 1]

]T
. (3.4.10)

Recall that in eq. (3.3.3), this effective noise vector is related to the channel estimation

error and the observation noise by the relation

µ[n] = ΓH [n]d[n] + ν[n].

For clarity in this discussion, the columns of Γ[n] are labeled as

Γ[n] =
[
γ ′0[n] γ ′1[n] · · · γ ′N−1[n]

]
, (3.4.11)
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where γ ′i[n] is the appropriate channel estimation error vector, γi[n], padded with

zeros so Γ[n] is a convolution matrix (see Section 2.2 for details of the channel con-

volution matrix). The (i, j)th element of the RΓ[n] matrix is

[
RΓ[n]

]
(i,j)

= E{γ ′Hi [n]γ ′j[n]}. (3.4.12)

Assuming the process noise, υ is stationary, the elements of RΓ[n] are constant,

i.e. RΓ[n] = RΓ. Furthermore, the matrix RΓ is Toeplitz [75], with the elements of the

ith diagonal equal to the sum of the elements of the ith diagonal of Rγ [75]. Assuming

the observation noise is white, the off-diagonal terms in the effective noise correlation

matrix are due to correlated fluctuations in neighboring channel coefficients.

The next section shows how the assumption of a Toeplitz matrix can be exploited

to create an algorithm which both reduces computational complexity and improves

performance over previously proposed algorithms.

3.5 Estimating the effective noise correlation ma-

trix

Section 3.3 showed that the effective noise correlation matrix is the sum of observation

noise correlation matrix and a term caused by channel estimation errors. Section 3.3

also showed that using the assumptions of a slowly varying channel and stationarity

of the observation noise statistics, the effective noise correlation matrix is Toeplitz.

The current section provides an algorithm for estimating the entire effective noise

correlation matrix by estimating first row and using the Toeplitz-Hermitian structure.

Recall from eq. (3.3.3) that the effective observation noise is the difference between

the received signal and the estimated received signal using past transmitted and the

estimated channel,

µ[n] = u[n]− ĜH [n− 1]d̂[n].

The previous section showed that the effective noise correlation matrix is approx-
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imately Toeplitz, so the effective noise correlation matrix can be constructed using

only an estimate of the first column. This estimate can be computed using the biased

correlation of the received signal prediction error,

µ̂i[n] =
1

Lff

Lff−i∑
j=1

µ∗[n, i+ j]µ[n, j], i = 0, . . . , L− 1, (3.5.1)

where µ[n, j] is the jth element of the effective noise vector at time n, Lff = Lc + La

is the number of feedforward equalizer coefficients, and µ̂i is the ith component of the

biased received signal prediction error vector correlation estimate.

Assuming the effective noise is ergodic a time-average of µ̂i[n] is a good esti-

mate of the effective-noise correlation at lag i. To accommodate time-variability an

exponentially-windowed sample average is used to approximate the ensemble average,

R̂µ,[1,i][n] =
(1− λcorr)

(1− λn+1
corr )

n∑
k=0

λn−kcorr µ̂i[k]. (3.5.2)

Using an exponentially-windowed sample average allows the time-varying nature

of the statistics to be captured through λcorr while approximating the value of Rµ,[1,i],

the ith component of the first row of the effective noise correlation matrix at time

n. The complete effective noise correlation matrix is constructed using assuming a

Toeplitz-Hermitian structure of the effective noise correlation matrix.

Implementing the correlation using a fast Fourier transform to compute the auto-

correlation the computational complexity of the proposed algorithm isO (Lff log2(Lff)).

Previously proposed algorithms had complexity of O(L2
ff) since there was a necessary

vector outer product. For an underwater channel where the feedforward coefficients

can number in the tens or hundreds, the proposed algorithm has a noticeably lower

computational complexity.

To summarize the advantages of using the proposed algorithm for estimating the

effective noise covariance matrix over previously proposed algorithms:

• The number of components that must be tracked is reduced from Lff
2 to Lff .

This helps with the memory requirements and enables extra ensemble averaging
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since the diagonals of the correlation matrix are averaged.

• The structure of the interference plus noise correlation matrix is easily modified,

i.e. if the effective noise correlation matrix is known to be tri-diagonal, then only

two coefficients have to be tracked.

• There is a performance improvement due to restricting matrix to be Toeplitz.

• The computational complexity is reduced from O(L2
ff) to O (Lff log2(Lff)).

The first point is especially interesting since underwater communication problems

are often data limited due to time-variation of the channel. This method provides

a way to more effectively use the available data. In the next section the proposed

algorithm and others are compared using a CEB-DFE on experimental data.

3.6 Experimental results

The SPACE08 was performed off the coast of Martha’s Vineyard, MA from Oct.

14th through Nov. 1st, 2008. The water depth was approximately 15 meters, the

transmitter was approximately 4 meters from the sea floor and the bottom of the

receive arrays were about 3.25 meters above the sea floor. For the data analyzed here

the distance from the transmitter to the receiver was 200 meters. The receiver was

the twelfth receive element from the bottom of a 24 element array with 5 centimeter

element spacing. Figure 3.6.1 illustrates the setup of this experiment.

The data signal had a bandwidth of B = 6.51 kHz and was modulated onto a

carrier with frequency fc = 12.5 kHz. The sampling frequency was fs = 39062.5

samples/second. The transmitted signal analyzed here is a 4095-length M-sequence

that was repeated 89 times for a packet that is one minute in length (with some zero-

padding). The data was modulated using binary phase shift keying (BPSK) onto a

square-root raised cosine pulse.
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Figure 3.6.1: Setup of the SPACE08 experiment for the 1 km receiver.

3.6.1 Fluctuation of effective SNR

Using the experimental data the first quantity examined is the fluctuation of the

estimated effective noise correlation matrix coefficients. Figure 3.6.2 shows the top-

left estimated element of the effective noise correlation matrix as it evolves over a

minute long data packet. This plot shows that the effective noise statistics are time-

varying and need to be tracked. The coherence time of these coefficients is apparently

around five seconds, which is very long compared with the sampling period, so an

assumption of time-invariance over the averaging window is reasonable.

The curve in figure 3.6.2 highlights the variability of the observed SNR over the

packet duration. A single element of the effective noise correlation matrix changes

by more than 5 dB over an interval of less than ten seconds. Only using an average

value would lead to increased residual mean-squared-error after equalization.

3.6.2 DFE comparison

To determine the effectiveness of the proposed algorithm several methods for approx-

imating the effective noise correlation matrix were examined. Table 3.6.1 provides a

description of each of the methods.

The mean squared error is the squared magnitude of the residual data estimation
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Figure 3.6.2: Top-left element of the estimated effective noise correlation matrix,[
R̂µ

]
(1,1)

, from October 26, 2008 at time 0800. The variance is tracked using an

exponential window algorithm.. This value is a measure of the effective noise variance.
Over the one minute packet there is a 5 dB peak to peak change with a coherence
time of approximately five seconds.

Table 3.6.1: Description of methods compared using the SPACE08 data set.

Method Label Description

AMB CEB-DFE where the effective noise correlation matrix is
approximated as a scaled identity matrix where its scaling
is based on the SNR measured from the basebanded data
before any equalization.

DIAG CEB-DFE where the top-right entry of the estimated effec-
tive noise correlation matrix,

[
R̂µ

]
(1,1)

, is used as an esti-

mate of the effective noise variance. The effective noise cor-
relation matrix is approximated as a scaled identity matrix.

SING CEB-DFE where the effective noise correlation matrix is
approximated by a diagonal matrix with entries equal to
the main diagonal of R̂µ.

FULL CEB-DFE where the full effective noise correlation matrix
is estimated from the data.

TOEP CEB-DFE where the effective noise correlation matrix is
estimated as a Topelitz-Hermitian matrix as described in
this chapter.
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(a) Data from October 23, 2008 at time 1800.
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(b) Data from October 20, 2008 at time 1200.
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(c) Data from October 26, 2008 at time 0800.

Figure 3.6.3: Mean squared error (MSE) results after DFE for SPACE08 experiment
200m data using different estimates of the effective noise correlation matrix defined
in Table 3.6.1. Data is ordered from (a) calm conditions to (c) stormy conditions.

error before any symbol decisions are made:

εMSE =
1
M

∑M
i=1 |d[i]− d̃[i]|2

σ2
d

(3.6.1)

where M is the number of transmitted symbols. In these results, M = 100, 000.

The in-band SNR is varied by adding an appropriately scaled realization of the am-

bient noise which was recorded using the same hydrophone shortly after the signal

transmission ended.
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Figure 3.6.3 shows the mean squared error from three different days of the SPACE08

experiment. These figures are ordered from the calmest ocean conditions on the top

to the roughest conditions at the bottom. On October 23 (Julian day 297) the wave

height was 0.5 meters, 1.2 meters on October 20 (Julian day 294), and 3 meters on

October 26 ((Julian day 300).

The data shows that there is a penalty for assuming that the estimated noise

matrix is diagonal (labeled DIAG in the plot). The data also show that there is no

additional penalty for estimating this diagonal matrix using only one estimated value

and a Toeplitz structure (labeled SING in this plot).

The plot labeled AMB is created using an equalizer which estimated the effective

noise correlation matrix as the diagonal matrix with the diagonal equal to the inverse

of an SNR measured from the received signal. This approximation does not account

for channel estimation errors so as the SNR is increased there is a model mismatch

between the estimated and the true effective noise correlation matrix, so above a

threshold the MSE will increase with SNR (as observed).

The results show that a DFE using an effective noise correlation matrix calcu-

lated using the proposed method (TOEP) slightly outperforms one using an matrix

calculated with no Toeplitz constraint (FULL). This data emphasizes the overall gain

since there is a slight performance improvement and there is decrease in the amount

of computation needed.

The improvement in performance is the result of the reduction in the number of

free parameters that must be estimated when the Toeplitz assumption is imposed.

The results also demonstrate that assuming that the effective noise correlation

matrix is diagonal and therefore not accounting for the full correlation structure of

this noise results in a significant performance loss.

Therefore, the proposed method imposes appropriate structure on the estimated

effective noise correlation matrix to both improve performance with respect to other

proposed or commonly used approaches and to reduce computation complexity when

compared to the next best performing method.
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3.7 Conclusions

In this chapter, the existence of non-zero off-diagonal elements in the effective noise

correlation matrix has been justified based upon the physical characteristics of the

underwater acoustic propagation environment; the fluctuations of neighboring taps of

the channel impulse response are correlated which causes off-diagonal terms appear

in the effective noise correlation matrix.

An algorithm exploiting the Toeplitz and Hermitian structure of this matrix was

developed that not only reduces computational complexity when compared to algo-

rithms that do not impose the Toeplitz constraint but also results in a DFE whose

performance is better than that achieved by DFEs using other estimators of the ma-

trix. The reduction in computational complexity is important in array systems where

the number of coefficients being estimated is quite large and efficient algorithms are

needed for practical implementation.

Experimental data indicated that the statistics of the effective noise need to be

tracked to prevent loss of system performance. The variance of the effective noise can

vary by as much as 5 dB in a minute-long packet.

The literature on equalization of RF channels uses a non-adaptive, diagonal es-

timate of the effective noise correlation matrix. Methods described in this chapter

could be applied to equalizers for RF channels to reduce the mean squared error of

the equalized symbols.
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Chapter 4

Physically constrained beamspace

processing for a multichannel DFE

4.1 Introduction

Multichannel decision feedback equalization that has one feedforward section for each

sensor and one feedback section for the whole system has been shown to be a nearly

optimal method for handling the difficulties of the underwater communication channel

[105]. When there are a large number of array elements, however, the implementation

with one feedforward section per sensor may be prohibitive due to the rate of channel

variability verses the degrees of freedom and high computational complexity. Channel

time-variability limits the time-interval over which the constant channel assumption

is reasonable thus limiting the averaging interval of adaptive algorithms. The compu-

tational complexity is proportional to the square of the number of channels. Both of

these problems can be mitigated through beamspace processing, where the number

of DFE feedforward sections is now the number of beams.

Beamforming is a spatial filtering technique; only energy from certain directions

is passed through. Using a narrowband assumption, the received signal including all

multipath components arrives in a restricted angular space due to channel physics,

beams can be used to pass a restricted angular space, therefore reducing the problem

dimensionality, without reducing the available degrees of freedom of the received
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signal. Processing in beamspace both reduces the amount of data needed for averaging

and reduces the computational complexity.

Stojanovic et al. [109] showed that when the angle of arrival (AoA) is known for

all paths through the environment, the noise is spatially and temporally white, and

the signal is narrowband the MMSE solution for the beamformer weights is a matrix

with each column equal to an array manifold vector, one for each path. In the same

paper, Stojanovic proposed an adaptive method to find the beamformer weights since

the AoA are often unknown. This method is observed to work well [109], but does

not significantly reduce the computational complexity.

In the current work a non-adaptive method is proposed which finds the optimal

set of beams for a given range for the AoA on each path. This provides robustness

of the beamformer to arrival direction and allows the beams to be computed off-line.

Using an MMSE criterion, the optimal beamformer weights for a range of AoA on a

line array are shown to be the Discrete Prolate Spheroidal Sequences (DPSS). Slepian

is attributed with discovering the DPSS [94]. These sequences have a number of nice

properties, such as mutual orthogonality, symmetry and real-value coefficients. Many

methods have been studied for finding the DPSS [73].

In this thesis, a vertical line-array receiver is assumed. This choice is made for

a number of reasons: first, the physics of the acoustic channel will naturally bound

the angle of arrival. Second, when using a narrow-band assumption on a line-array

the array manifold vectors are complex exponential functions which simplifies the

derivations. Third, the available experimental data uses a vertical line-array receiver.

The proposed method in this chapter to bound the AoA range uses a geometric

ray-path model of sound propagation. The ray-path model along with the assumption

of a Pekeris waveguide [42], provides the AoA span and number of arrivals within a

given delay spread. When the number of arrivals in the delay span is less than the

number of sensors, there are fewer feedforward sections in the multichannel DFE for a

beamspace where there is one section for each arrival than in sensor space where there

is one section for each sensor. The ray-path model parameters such as water column

depth, propagation distance, and transmitter and receiver geometry are often either
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known a-priori or can be measured in-situ using commonly available instruments and

techniques.

The proposed methods for determining the beamformer weights and the number

of beams are verified using experimental data from the Surface Processes and Acous-

tic Communication Experiment (SPACE08) performed in at the Martha’s Vineyard

Coastal Observatory in 2008.

4.2 Receiver structure

The receiver structure studied throughout this chapter consists of a wideband beam-

former followed by a multichannel DFE, which is an extension of the DFE introduced

in Section 2.4. This structure allows for flexibility in the design of both the beam-

former and the DFE. The beamformer reduces the signal-space dimensionality from

the number of sensors down to the number of beams. The multichannel DFE equal-

izes, coherently combines, and estimates the transmitted symbol.

4.2.1 Multichannel decision feedback equalization

Recall that the decision feedback equalizer (DFE) consists of two linear filters working

together: the feedforward filter collects the energy from the received signal and shapes

its response and the feedback filter cancels the inter-symbol interference (ISI) from

previously received symbols [61, 81]. The general DFE equation is

d̃[n] =
Lc−1∑
`=−La

h∗ff [`]u[n− `] +

Lfb∑
`=1

h∗fb[`]d̂[n− `], (4.2.1)

where u[n] is the baseband received data, d̂[n] is the past symbol decisions, and d̃[n]

is the filtered received data before a symbol decision has been made. The La + Lc

feedforward filter coefficients are represented as hff [n], where La is the number of

acausal coefficients and Lc is the number of causal coefficients. The Lfb feedback

coefficients as hfb[n]. The total number of DFE coefficients is L = La + Lc + Lfb.
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Figure 4.2.1: A multichannel decision feedback equalizer.

Using vector notation, the DFE equation can be written more compactly,

d̃[n] = hHff u[n] + hHfbd̂[n] = hHz[n], (4.2.2)

where u[n] is a vector of received signal samples and d̂[n] is a vector of past data

symbol estimates. Both of these vectors are defined more carefully in Section 2.4.

Two vectors are reintroduced for notational simplicity: hT = [hTff hTfb] is a vector

of filter coefficients and zT [n] = [uT [n] d̂T [n]] is a data vector containing both the

received data and the past symbol estimates.

This framework can be modified to accommodate multiple receivers by expanding

the definition of the filter and data vectors. When there are K receive elements, the

vectors h and z[n] are

h =



hff,1

hff,2

...

hff,K

hfb


z[n] =



u1[n]

u2[n]
...

uK [n]

d̂[n]


,

where ui[n] is the vector of data received at the ith receive element and hff,i is the

vector of feedforward filter coefficients for the ith receive element. See Figure 4.2.1 for

an illustration of the functionality of a multichannel DFE.

A fractionally sampled equalizer is often used to reduce synchronization errors
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[82]. Using the supplied framework, the feedforward filters will each have rfs samples

per received symbol, while the feedback filter will remain the same length. At each

iteration, the data fed into each channel of the feedforward equalizer are moved ahead

by rfs samples.

Using data until time n, the LSE solution for the DA-DFE filter coefficients is

h[n] =

(
n∑

i=−∞

z[i]zH [i]

)−1( n∑
i=−∞

z[i]d∗[i]

)
. (4.2.3)

Notice that the filter coefficients now explicitly depend on time due to the dependence

on the received data. Using an EW-RLS algorithm, the DA-DFE filter coefficients

are computing using the relation

h[n] =

(
n∑

i=−∞

λn−iz[i]zH [i]

)−1( n∑
i=−∞

λn−iz[i]d∗[i]

)
. (4.2.4)

The DA-DFE structure is used in this chapter because it has low complexity

compared with the CEB-DFE (also known as the MMSE DFE). Since the CEB-DFE

algorithm requires an inversion of an L×L matrix, the complexity is O(L3). The DA-

DFE algorithm uses a data-recursive update to find a new solution, so the complexity

is only O(L2). A second reason the DA-DFE is used is that the performance difference

between the DA-DFE and CEB-DFE is negligible when the SNR is moderate to low,

which is where many underwater communication systems operate. There is an in-

depth comparison of the DA and CEB DFE in Chapter 6.

4.2.2 Beamforming

In Eq. (4.2.4), the number of filter coefficients being estimated is K× (La+Lc)+Lfb.

In underwater acoustic communication systems, a common practice is to set the num-

ber of feedforward equalizer coefficients based on the delay spread of the significant

received signal energy. Using this criterion the use of tens of coefficients per feedfor-

ward section is common resulting in high computational complexity. Stojanovic et
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Figure 4.2.2: A multichannel decision feedback equalizer with a beamformer front-end
to reduce computational complexity.

al. [109] noted that, when the signal is narrowband, the observation noise is spatially

and temporally white (or whitened), and the number and direction of all arrivals is

known, using beamformed data is equivalent to full sensor-space processing.

Beamforming can be viewed as a mapping of the received signal from the physical

sensor space to beam space. This is accomplished by applying a spatial window-

ing function with desired spatial-spectral characteristics. Even though underwater

acoustic communication data is not narrowband, the following wideband beamform-

ing method can be used with a linear array: a discrete Fourier transform (DFT) is

applied first to the data, beamforming is applied separately to each frequency bin,

and the inverse DFT is applied to the result. The beamforming operation can be

represented by the expression

ubf(ω) = ΦH(ω)u(ω), (4.2.5)

where Φ(ω) is the K × P beamforming matrix at frequency ω. The notation u(ω)

represents the Fourier transform of the received data and v(ω) represents the beam-

formed data, both at at frequency ω . The elements of the vectors are

u(ω) =


u1(ω)

u2(ω)
...

uK(ω)]T

 ubf(ω) =


ubf,1(ω)

ubf,2(ω)
...

ubf,P (ω)]T

 ,

80

. . 

f-----------.1[] 



where uk(ω) is the received data from sensor k and ubf,p(ω) is the received data in

beam. There are many good references covering beamforming more completely such

as [37, 43, 121].

The input to the DA-DFE is the output of a wideband beamformer, ubf(ω), trans-

formed into the time domain. Since the number of beams, P , is often much less than

the number of sensors, K, this results in a system with algorithmic complexity of

O((K/P )2) which is much less than the sensor-space system, which has complexity

O(K2). Figure 4.2.2 shows the DA-DFE with a beamformer.

4.3 Geometric ray-tracing propagation model

Beamforming is a useful method because it reduces computational complexity and

potentially increases performance. After deciding to use a beamformer, the next ques-

tions a system designer might ask are “How many beams should one use?” and “What

beam weights are best?” A common idea in the beamforming literature is to use an

algorithm to track each arrival angle separately and create a set of beams which are

the array manifold vectors pointed in the estimated arrival directions [7, 121, 124].

These methods tend to be computationally complex since the angles of arrival are

time-varying. Stojanovic et al. [105] noted that when designing an acoustic communi-

cation system, the beamformer does not need to separate arrivals into separate beams

since the feedforward equalizer adaptive combines the arrivals together by combining

the beams.

Since channel motion induces changes in the arrival angles, the approach proposed

in this chapter is to use a geometric model of the arrival structure to calculate a

minimum and maximum arrival angle and use a set of beams which span that angular

range.

Ray tracing is a common method used for high frequency acoustics (above 1 kHz)

[42]. In the ray tracing model considered in this chapter, the channel is assumed

to be a Pekaris waveguide with an pressure release surface and a soft, flat bottom.

At a boundary the angle of incidence equals the angle of reflection, so a geometric

81



Table 4.3.1: Table of elevation arrival angles and delays for first five arrivals using
geometric model with a flat surface and flat bottom.

Path Arrival Angle (in radians) Delay (in seconds)

Direct π
2

+ arctan
(
dR−dT
`TR

) √
(dR−dt)2+`2TR

cw

Bottom π
2

+ arctan
(

2dw−dR−dT
`TR

) √
(2dw−dR−dT )2+`2TR

cw

Surface π
2
− arctan

(
dR+dT
`TR

) √
(dR+dT )2+`2TR

cw

Surface-Bottom π
2

+ arctan
(

2dw−dR+dT
`TR

) √
(2dw−dR+dT )2+`2TR

cw

Bottom-Surface π
2
− arctan

(
2dw+dR−dT

`TR

) √
(2dw+dT−dT )2+`2TR

cw

propagation model only depends on the water column depth, the speed of sound,

the depth of the transmitter and receiver, and the distance between the transmitter;

parameters that are readily available in many oceanographic applications. In the

Pekeris waveguide, there is a soft bottom so paths which have propagation angles

above some critical angle are lost. In this work there is no need to know what the

critical angle is only that there are a limited number of paths.

Table 4.3.1 contains the delay and elevation angle of arrival for the earliest arriving

paths, using the notation

dw water column depth [m]

dT transmitter depth [m]

dR receiver depth [m]

`TR distance from transmitter to receiver [m]

cw speed of sound in seawater [m/s]

A ray-path model with a finite number of paths is approximately accurate since

there are only a small number of paths propagating below the critical angle. The

arrival angles are bounded within the range of the propagating paths. Figure 4.3.1

illustrates this bounded arrival structure for the case of three propagating paths: the

direct path, the bottom bounce path, and the surface bounce path.

The equations for computing the angle of arrival can be extended to an arbitrary

τpath. For simplification the last surface the signal interacts with before the receiver
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Figure 4.3.1: Illustration of multipath and the physically constrained angle of arrival
for the shallow water communications channel. The angle of arrival of a path from
the surface is defined to as θ = 00, from the bottom θ = 1800, and broadside θ = 900.

is specified. When the last bounce is a surface bounce, the angle of arrival is

θpath,surface = arcsin

(
`TR

cw · τpath

)
. (4.3.1)

When the last bounce is a bottom bounce, the angle of arrival is

θpath,bottom =
π

2
+ arccos

(
`TR

cw · τpath

)
. (4.3.2)

Using an delay, τrelative, relative to the shortest path (i.e. when the propagation

path is of length `TR), the equations for angle of arrival can be rewritten. When the

last bounce is a surface bounce, the AoA expression becomes

θpath,surface = arcsin

((
cw · τrelative

`TR

+ 1

)−1
)
. (4.3.3)

When the last bounce is a bottom bounce, the AoA expression becomes

θpath,bottom =
π

2
+ arccos

((
cw · τrelative

`TR

+ 1

)−1
)
. (4.3.4)

Figure 4.3.2 shows the estimated delay and angle of arrival for signals propagating

along each path using the ray model (the white crosses) as well as estimates of the

actual intensity estimated from the data as a function of delay and angle using data

collected during the SPACE08 experiment (described in Section 4.7).
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Figure 4.3.2: Estimated angle of arrival and delay of the channel impulse response
arrivals from the from the SPACE08 experiment from Julian day 297 at time 1800.
The white crosses indicate the arrival points calculated from the geometrical arrival
model. The arrivals are labeled according to their interaction with the surface and
bottom from the transmitter to the receiver: S indicates a surface bounce and B a
bottom bounce.
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4.4 Optimal beams for bounded angle-of-arrival

subspace

4.4.1 Channel model

The previous section provided a limited method for estimating the number of beams

impinging on a receiving array, but a natural question arises, “How is the number

of arrivals related to the number of beams needed to capture the signal energy?”

Stojanovic, et al. [109] showed that the number of beams should equal the number

of arrivals. To show this, a framework for analyzing the problem is described. The

vector of signals traveling along P paths, received by a linear array with K elements

can be modeled as

u[n] =


u0[n]

...

uk−1[n]

 =


1 · · · 1

e−jφ1 · · · e−jφp

...
...

e−j(K−1)φ1 · · · e−j(K−1)φp



y1[n]

...

yP [n]

+


ν1[n]

...

νP [n]


= Φy[n] + ν[n]. (4.4.1)

In the expression above, ν[n] is a vector of noise components assumed to be indepen-

dent of the signal and Φ is a matrix whose columns are the array manifold vectors

pointed in the arrival direction characterized by φk = 2πf
cw
ds× uk. The direction uk is

defined as uk = cos(θk) and θk is the AoA of the kth path, f is the signal frequency

being examined, cw is the speed of sound in water (assuming isovelocity channel). ds

is the sensor spacing. The array manifold vector for a uniformly spaced linear array

is [121]

v(uk) =


1

e−j
2πf
cw

dsuk

...

e−j
2πf
cw

(K−1)dsuk

 . (4.4.2)

The vector y[n] is called the path space signal since it is the transmitted data
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symbols convolved with the impulse response along each path (not including phase

shift terms in Φ),

y[n] = GH
p [n]d′[n]. (4.4.3)

The overall path channel impulse response matrix, Gp[n], includes transmitter and

receiver filtering. Defining Na as the maximum number of acausal channel coefficients

across all paths and Nc as the maximum number of causal channel coefficients across

all paths, the ith column of Gp[n] is the effective channel of the ith path at time n,

gi[n] =
[
gi[n,Nc − 1] . . . gi[n, 0] . . . gi[n,−Na]

]T
, (4.4.4)

where gi[m, `] is the channel impulse response coefficient for the ith path at time m

and delay `.

The transmitted symbol vector, d′[n], (defined similarly to eq. (2.2.4)) is

d′[n] = [d[n−Nc + 1] . . . d[n] . . . d[n+Na]]
T , (4.4.5)

where d[m] is the transmitted data symbol at time m. A common simplifying assump-

tion to use spatially and temporally white observation noise ν[n]. This assumption

is most accurate when the SNR is very high and instrumentation noise dominates

the environmental ambient noise. Stojanovic et al. [109] showed that a multichannel

DFE with a beamformer which used Φ as the beamforming weight matrix operated

with minimum mean squared error, i.e.

ubf [n] = ΦHu[n], (4.4.6)

where ubf [n] is the beamformed data. Furthermore, when the signal is narrowband

and the noise is spatially and temporally white, any beamforming matrix B that

satisfies

ΦHB
(
BHB

)−1
BHΦ = ΦHΦ (4.4.7)

can be used as the beamformer weight matrix to achieve minimum mean squared
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error performance. The matrix B(BHB)BH is a projection matrix, so eq. (4.4.7)

implies that any matrix that describes a subspace which contains Φ does not increase

the mean squared error performance of the multichannel DFE.

One example of a matrix which satisfies the condition of eq. (4.4.7) is the identity

matrix, I, where the beamspace is the sensor-space. Reducing the number of beams,

however, reduces the computational complexity and also improves system perfor-

mance by reducing the number of adapting parameters. This reasoning strongly

suggest that the number of beams should be minimized. The minimum number of

beams implied by eq. (4.4.7) is the number of arrival paths.

4.4.2 Derivation of optimal beams

In most underwater settings the arrival angles for the different multipath components

are unknown, so the matrix Φ is also unknown. Adaptively tracking beam weights

which minimize the mean squared error performance is one way to circumvent this

issue [109]. Unfortunately, this adds additional computational complexity and the

adaptation method described in [109] is observed to be unstable under certain condi-

tions (shown experimentally in Section 4.7).

An alternate method proposed in the current work is to create a non-adaptive

set of beams based on observed environmental parameters. In the shallow water

(Pekeris) waveguide there are only a finite number of propagating paths under our

model assumptions, so there are a finite number of arrivals [42]. The arrival angles

for the multipath components are bounded to umin < u < umax, where u = cos(θ).

Without loss of generality the angle of arrival range is assume to be centered, so

−umin = umax = u0. Any non-centered range can be centered by introducing a phase

shift in the beam weights.

The condition in eq. (4.4.7) cannot be met with equality for a continuous range

of angles. The problem is equivalent to a discrete filter design problem with a unity

constraint over an angular range. Neither of these problems can be solved exactly in a

finite dimensional space. Each column of Φ is an array manifold vector parametrized

by an angle of arrival, θ. A new metric is proposed which minimizes average distortion
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of the inner product of two array manifold vectors over the angular range of interest.

The beamformer weight matrix, Bopt, is found as a solution to the optimization

problem,

Bopt = min
B

∫ u0

−u0

∫ u0

−u0

∣∣vH(u′1)v(u′2)− vH(u′1)B(BHB)−1BHv′(u′2)
∣∣2du′1du′2. (4.4.8)

The form of this problem is similar to one recently studied by Kitchens in chapter 5 of

his PhD thesis [48]. The solution from Kitchens proposed was to build a matrix of the

desired rank where the columns are the eigenvectors corresponding to the maximum

eigenvalues of the matrix

Ru ,
∫ u0

−u0

v(u)vH(u)du. (4.4.9)

A key part of the proof in [48] uses the Poincare separation theorem to show that

the eigenvectors corresponding to the maximum eigenvalues are the solution to this

problem. The details of the proof imply that a whole family of metrics give rise to this

same solution: any metric that preserves the eigenvalue ordering is equivalent. One

result is that finding the subspace which minimizes the distortion of the inner product

is equivalent to finding the subspace that minimizes the average squared difference

between the array manifold vectors and their projection. Other cost functions also

produce the same solutions, and hence different interpretations, but these are not

explored further in this thesis.

Using array manifold vectors for linear array (see eq. (4.4.2)), the form of this

solution is the same (within scaling) to a problem studied by Slepian in [94]. In

this work he showed that the eigenvectors of the matrix in eq. (4.4.9) are the set

of discrete prolate spheroidal sequences (DPSS). Thus, a solution to eq. (4.4.8) is a

matrix where the columns are the first P discrete prolate spheroidal sequences, where

P is the number of paths.
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4.4.3 Discrete prolate spheroidal sequences

The discrete prolate spheroidal sequences were discovered by Slepian in 1970s [94]

while trying to answer the question: “What is the fixed-length, real sequence with the

most energy within a specified bandwidth?” The DPSS are real and have a number

of surprising and useful symmetry properties [94]. Since their discovery DPSS have

been used in many areas of signal processing, most notably for multi-taper spectral

estimation [73, 114].

The set of DPSS specified of a given length, NDPSS, and target normalized band-

width, W , form a complete orthogonal basis. Note that only about 2NDPSSW se-

quences will have a majority of their energy within the specified bandwidth [94].

Figure 4.4.1 shows an example of the first 5 DPSS weights for NDPSS = 24 and

W = 0.12. Note that the energy of the fifth beam is starting to leak outside of the

specified bandwidth.

DPSS are sometimes avoided is that there is no closed form solution for finding

the DPSS values. Fortunately, efficient methods for finding the sequence values are

quite prevalent in the literature, e.g. [8, 73, 94]. In the current work, the DPSS beam

weights are found for a specified bandwidth, which corresponds to the angle of arrival

range. The number of DPSS beams can range from one to the number of sensors.

The DPSS beam weights are orthogonal since the set of DPSS are orthogonal by

definition. If the number of beams desired is equal to the number of sensors, the

beamformer weight matrix is unitary.

4.5 Alternative beamforming strategies

In the previous section the optimal beam-weights were found to be the DPSS when

the angle of arrivals are unknown but bounded to a specified range. The algorithm

for determining the DPSS can have high computational complexity, the beam-weights

are symmetric, and they are only optimal for the specified criterion. In this section,

a variety of alternative beamforming strategies are presented for comparison with the

DPSS beams-weights.
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Figure 4.4.1: First 5 DPSS coefficients for the DPSS with 24 coefficients constrained
within a normalized bandwidth bounded by ±0.12.
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Figure 4.5.1: Uniform weighted beampattern in k space at the design frequency of
the array. Note that the peak of beam is at the null of the adjacent beams.

The methods for determining the beam-weights in this section are chosen either be-

cause of their relative simplicity (steered uniform beams), they were well-established

in the literature (MVDR, MCM, principle-component, and fully adaptive methods),

or they exploited some property that potentially improved performance while reduc-

ing computational complexity (time-aligned beams and hybrid methods).

4.5.1 Uniform beamformer

One alternative set of beam weights is uniformly weighted beams. As the name

implies, the beam weight coefficients all have the same magnitude. The beam weights

are the array manifold vectors with angles specified so that neighboring beams are

orthogonal at the design frequency, usually specified as fd = cw
2ds

for an array with

sensor spacing of ds. The first beam placed is placed at broadside which ensures

that the beams are placed symmetrically. Figure 4.5.1 shows an example of adjacent

beams at the fd.
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(a) (b)

Figure 4.5.2: Arrivals from SPACE08 data during calm weather conditions. The
orange line specifies the delay calculated for the time-aligned uniform beam weights.
Figure (a) shows the bounds for αb = 1 and figure (b) with αb = 1

2
.

4.5.2 Uniform beamformer time-aligned

The geometric ray-path model devised in Section 4.3 indicates that the arrival delay

depends on the angle of arrival. The method for finding the uniform beams described

above produces a specific set of angles where the beams are steered. Using the

expressions from Section 4.3, the path delays can be computed for the specified beam

angles.

Recall that for white observation noise, the feedforward section of the DFE is

a matched filter. Using the estimated the path delay for the beam angle, only the

feedforward coefficients corresponding to delays after the arrival are included in the

feedforward section; the feedforward coefficients corresponding to regions where no

signal energy is expected are discarded. This reduces the dimensionality of the adap-

tive equalizer which reduces the computational complexity.

Using the geometric ray-path model, the estimated arrival delay, τm for a specified
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arrival angle, θ, is

τm(θ) = αb
`2

TR

c
csc2(θ)− τoffset, (4.5.1)

The parameters αb and τoffset are design parameters introduced to account for inaccu-

racies of the ray-path model and decrease sensitivity of the beams to channel motion.

The expression csc(θ) is the cosecant of θ (i.e. the reciprocal of the sine of θ.) The

parameter αb is a scaling factor used to widen the bound and the parameter τoffset is

an delay offset. Here these parameters are set to αb = 1/2 and τoffset = 10 ∗ Ns/fs,

where Ns is the number of samples per symbol and fs is the sampling frequency.

Figure 4.5.2 illustrates two values of the scaling parameter αb = 1 and αb = 1
2
.

4.5.3 Principle component (eigenvector) beamforming

A desirable property of the beamformed received signal is that the beams are mutually

uncorrelated. LeBlanc and Beaujean [55, 56] proposed achieving this using principle

component analysis (PCA) on the estimated received signal correlation matrix, R̂u.

To see that this is the correct method consider the objective:

E{uHbf,i[n]ubf,j[n]} = αPCAδi,j. (4.5.2)

In this expression ubf,i is the received signal beamformed with beam i, αPCA is a

scaling, and δi,j is the Kronecker delta

δi,j =

 1 i = j

0 i 6= j
.

Using the expression, ubf,i = wH
PCA,iu[n], and evaluating the expectation in eq. (4.5.2))

gives

wH
PCA,iRuwPCA,j = αPCAδi,j. (4.5.3)
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One solution for wPCAi is the eigenvectors of Ru. The received data correlation matrix

is not available and so it is estimated using

R̂u[n] =
N∑

j=n−N+1

u[j]uH [j]. (4.5.4)

The scaling parameter αPCA becomes the eigenvalue associated with the ith eigenvec-

tor.

LeBlanc and Beaujean focused mainly on decorrelating the data. This method

not only decorrelates the beamformed data but by using the largest eigenvalue first

captures the most signal energy for a specified number of beams.

In this thesis the eigenvectors corresponding to a specified number of the largest

principle components (eigenvalues) of the estimated received signal correlation matrix

are used as beamforming weights.

4.5.4 MVDR and MCM beamforming

The techniques discussed up to this point have not taken the spatial spectrum of the

noise into account. For many underwater channels, the noise wavenumber spectrum

is colored due to the nature of underwater noise [119, 42]. When the noise correlation

matrix is known or well-estimated, the minimum variance distortionless response

(MVDR), which is similar to the Capon beamformer [13], is a common structure used

in the beamforming community. This beamformer provides the minimum variance

response such that signals arriving from the specified angle of arrival are not distorted.

The constrained optimization problem from finding the MVDR beam weights is

wMVDR = arg min
w

E{
∣∣wHs

∣∣2}
subject to wHv(u1) = 1.

(4.5.5)

In this formulation, s = v(u1) + ν is the signal vector, wMVDR is beamformer weight

vector, v(u1) is the array manifold vector pointing at direction u1 = cos θ1 (θ1 is

the AoA), ν is a noise vector, and wHv(u1) = 1 is the distortionless criterion. The
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solution to this optimization problem is wMVDR, [121]

wMVDR =
[
v(u1)R−1

ν v(u1)
]−1

R−1
ν v(u1), (4.5.6)

where Rν is the noise correlation matrix.

One shortcoming of the MVDR framework is that it is sensitive to model mis-

match. For example when the signal is treated as noise, it is rejected when the true

signal is

s = v(ũ1) + ν,

and the difference between the two angles is ∆u1 = |ũ1 − u1| > cw
Kdsf

(assuming white

noise). This difficulty can be handled when using multiple MVDR beams by ensuring

the difference is not too big between two neighboring specified distortionless response

angles, i.e. for two MVDR beams with specified angles u1 and u2,

|u2 − u1| <
cw

Kdsf
.

Another difficulty of using MVDR beams occurs when the noise is highly direc-

tional; regardless of SNR, signals arriving near strong noise directions are highly

attenuated. The purpose of a beamformer in a communication system is to collect as

much signal energy as possible to increase the observed SNR. Creating a beamformer

which potentially rejects signal energy is non-ideal.

One method to partially mitigate this shortcoming is to use the multiple constraint

method (MCM) proposed by Schmidt et al. [89]. The MCM imposes additional con-

straints to ensure that directions near the distortionless direction are not attenuated

too heavily. In the present case, the additional constraints ensure notches don’t ap-

pear in the main lobe of the beamformer.

The MVDR optimization problem from eq. (4.5.5) withadditional constraints is
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the MCM constrained optimization problem

wMCM = arg min
w

E{
∣∣wHs

∣∣2}
subject to wH

MCMv(u1) = 1

wH
MCMv(u2) = b2

...

wH
MCMv(uNmc) = bNmc .

(4.5.7)

In the above expressions, bi is a constraint and Nmc is the number of constraints.

The first constraint is the distortionless constraint in the desired look direction, u1,

so b1 = 1. One method for setting the additional constraints, borrowed from [89],

is to set bi = vH(u1)v(ui), the inner product of the distortionless direction with the

constraint direction. Setting all bi = 1 uses too many degrees of freedom and limits

the noise rejection capability outside of the constraint directions. The constraint

directions are usually chosen to be within the main-lobe response of the distortionless

direction.

Building a vector b of constraint values and a matrix V, where each column is an

array manifold matrix pointed in a constraint direction, i.e.

b =


b1

b2

. . .

bnmc

 V =
[
v(u1) v(u2) · · · v(uNmc)

]
,

the constraints can be written more compactly as

wH
MCMV = b. (4.5.8)

The solution for the beamformer weights using MCM is [89]

wMCM = R−1
ν V

[
VHR−1

ν V
]−1

b∗. (4.5.9)
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To create a set of beams, a set of directions are chosen (e.g. evenly spaced angles

over the range of interest) and MCM beam weights are calculated for each beam

direction. The distortionless directions chosen for the set of MCM beams (one dis-

tortionless direction per beam) are the same as the steered directions of the uniform

beams described in the previous section. The reason for this choice is that when the

noise is white, the MCM beamformer weight matrix equals the uniform beamformer

weight matrix.

This procedure can be extended by enforcing mutual orthogonality among the

beams. The multichannel DFE with orthogonal MCM beams, however, had higher

observed output mean squared error than a multichanel DFE with non-orthogonal

MCM beams. This result appeared in every data set tested, so the additional effort

of constraining the beams to be orthogonal appears to not be worthwhile.

Both the MVDR or MCM beamforming weight are non-ideal for communication

systems because the goal of both MVDR and MCM methods is to reject energy from

certain directions. The main purpose of the beamformer in a communication system

is to gather as much signal energy as possible and preserve as many degrees of freedom

for future adaptation by the DFE. Thus, a multichannel DFE using either MVDR or

MCM beam weights won’t perform as well as other proposed methods.

4.5.5 Adaptive time-domain beamforming

One method to avoid the complications of the narrowband assumption is to work

entirely in the time domain. Initial work on an adaptive array with tapped delay line

processing was done by Compton et al. [22, 23, 84, 122, 123]. Recently, Stojanovic

et al. [109] proposed a time-domain, adaptive beamformer with a multichannel DFE.

The beamformer and the DFE are adapted together using the same error to update

their coefficients using an RLS algorithm.

The procedure for finding the multichannel DFE coefficients when using a beam-

former is very similar to the procedure for finding the multichannel DFE coefficients

without a beamformer. The beamformed and equalized data before a symbol decision
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is made are

d̃[n] =


hff,1[n− 1]

hff,2[n− 1]
...

hff,M [n− 1]



H 
UT [n]ĉ∗1[n− 1]

UT [n]ĉ∗2[n− 1]
...

UT [n]ĉ∗M [n− 1]

+ hHfb[n− 1]d̂[n− 1]. (4.5.10)

In this expression, U is an Lff ×K matrix of the received signal where each column

corresponds to one sensor (Lff = La + Lc is the number of feedforward coefficients

in each feedforward section of the DFE), ĉi is a vector the ith beam weights, hff,i

is a vector of the ith feedforward section coefficients, hfb is the feedback coefficients,

and d̂fb is a vector of past data estimates. The time index on all estimated vectors

indicates the time at which the estimate was made (all are a lag-1 estimates). The

time index on the feedback data indicates that the most recent estimate is the last

piece of data.

A more compact representation is

d̃[n] = hHff [n− 1]qc[n] + hHfb[n− 1]d̂[n− 1], (4.5.11)

where, hff , is a vector of all the feedforward DFE coefficients and

qc =


UT [n]ĉ∗1[n− 1]

UT [n]ĉ∗2[n− 1]
...

UT [n]ĉ∗M [n− 1]

 .

An even more compact representation is given by

d̃[n] = hH [n]x[n], (4.5.12)
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where

h[n] =

hff [n]

hfb[n]

 , (4.5.13)

and

x[n] =

 qc[n]

dfb[n− 1]

 . (4.5.14)

The equalizer coefficients are found as the solution to the exponentially windowed

least squares optimization problem,

h[n] = arg min
h′

n∑
i=1

λn−i
∣∣∣d̂[i]− h′x[i]

∣∣∣2. (4.5.15)

where d̂[i] is the transmitted data symbol estimate at time i and λ is the exponential

weighting coefficient. The solution to this optimization problem is

h[n] =

(
n∑
i=0

λn−ix[i]xH [i]

)−1( n∑
i=0

λn−ix[i]d̂∗[i]

)
. (4.5.16)

A key observation for finding the beamforming coefficients is that in eq. (4.5.10),

the beamformer and the feedforward filter are interchangeable. Thus, the data esti-

mate can be rewritten as

d̃[n] =


ĉ1[n− 1]

ĉ2[n− 1]
...

ĉM [n− 1]



H 
U[n]h∗ff,1[n− 1]

U[n]h∗ff,2[n− 1]
...

U[n]h∗ff,M[n− 1]

+ hHfb[n− 1]d̂fb[n− 1]. (4.5.17)

Eq. (4.5.17) can be rewritten as

d̃[n] = ĉ[n− 1]qh[n] + hHfb[n− 1]d̂[n− 1], (4.5.18)
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where ĉ[n] a vector of the adaptive beam weights stacked together and

qh[n] =


U[n]h∗ff,1[n− 1]

U[n]h∗ff,2[n− 1]
...

U[n]h∗ff,M[n− 1]


The beamforming coefficients found by solving the exponentially windowed least-

squares problem

ĉ[n] = arg min
c′

n∑
i=1

λn−i
∣∣∣d̂[i]− hHfb[i]d̂[i− 1]− c′Hqh[i]

∣∣∣2. (4.5.19)

The solution to this optimization problem is

ĉ[n] =

(
n∑
i=0

λn−iqh[i]q
H
h [i]

)−1( n∑
i=0

λn−iqh[i]
(
d̂[i]− hHfb[i]d̂[i− 1]

)∗)
. (4.5.20)

Comparing eqs. (4.5.16) and (4.5.20) reveals that the error term being minimized is

the same, which allows for a parallel implementation.

The adaptive beamforming algorithm tends to work well in practice, but the al-

gorithmic stability is hard to analyze due to nonlinearities. Instabilities have been

observed in implementation, even when used in training mode where actual transmit-

ted symbols are used instead of symbol decisions.

This use of the same error metric for adaptation of both the beams and the

equalizer coefficients could lead to a variety of failure modes. If one of the beams

has a very low weight or two of the beams are highly correlated, the inverse matrix

is ill-conditioned . The reverse situation also occurs when one feedforward section

of the DFE is all low weights. These situations occur when the problem is over-

parametrized, i.e. more beams are used than paths and there are a limited number

of snapshots. Figure 4.5.3 shows the interconnectedness of the adaptive algorithm.

Since there is so much interconnection and the use of shared quantities is non-linear,

instabilities could easily occur when using the algorithm.
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Figure 4.5.3: Interconnections in adaptive beamformer-DFE algorithm, which could
lead to possible instabilities.

4.5.6 Hybrid methods

To harness both the computation reduction of the non-adaptive beams with the per-

formance of the adaptive methods a hybrid method is proposed. In this method the

received signal is sent through an initial beamformer which reduces the dimensional-

ity of the data from sensor space to a beamspace. This beamformed data is fed into

an adaptive beamformer algorithm and then into the multichannel DFE.

The main idea behind this method is that using a non-adaptive beamforming

method, such as DPSS, preserves more of the signal energy and has similar computa-

tional advantages to reducing dimensionality by ignoring some of the receive sensors.

Additionally, there are fewer parameters for the adaptive beamformer to adjust (due

to the dimension reduction), which could improve performance in highly time-varying

environments. A block diagram of this method is shown in figure 4.5.4. The beam-

formed data is represented as u′[n] after the initial beamformer, which has B > P

beams.

4.6 Estimating the number of beams

In the previous sections, many methods for finding beampatterns for a given number

of beams were presented. In this thesis there has been no strong guidance yet into
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Figure 4.5.4: Hybrid-method for combining non-adaptive beamformer with adaptive
beamformer. First the data is beamformed using a non-adaptive beamformer, such
as a set of DPSS beams or uniformly weighted beams, and then the signal is sent
through an equalizer and beamformer which are allowed to adapt to the signal.

how to choose the number of beams to use, except that the number of beams should

be equal to the number of paths.

In this section, several methods are presented for estimating the number of ar-

rivals impinging on the array. These methods fall into three broad classes: (i) physics-

based methods, (ii) information theoretic methods, and (iii) generalized χ2 methods.

Physics-based methods use the ray-path model presented in Section 4.3 and environ-

mental parameters to estimate the number of arrivals. Information theoretic methods

use eigenvalue analysis to create an estimate of the rank of the signal subspace. Gen-

eralized χ2 methods assume the channel is Rayleigh fading and match the estimated

received signal statistics to a generalized χ2 distribution to determine the number of

degrees of freedom and hence the number of arrival paths.

The aim of this section is to evaluate these methods and describe their relative

strengths and weaknesses. The results show that generalized χ2 methods produce an

estimate of the number of beams which nearly matches the knee in the observed mul-

tichannel DFE performance curves. Physics-based methods produce a slightly higher

estimate, but one that is still reasonable. Information theoretic methods produce a

estimate much higher than the observed data seems to support.
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4.6.1 Physics-based method

Section 4.3 described a geometric ray-path model of the acoustic propagation envi-

ronment. Along with the assumption of a constant, known sound speed this model

provides not only the angle bounds discussed earlier but also the number of propaga-

tion paths. Figure 4.3.1 shows an illustration of the propagation paths.

The number of equalizer taps in each feedforward section is assumed to either be

specified or determined from the channel impulse response estimate. Generally, the

number of taps is chosen such that there are enough to span most of the energetic

portion of the channel impulse response. If the specific channel impulse response is

not available, the number of taps is usually specified for a range of expected channels

and the available computing resources.

At first glance this may appear to be a chicken and egg problem because one might

expect that while examining the channel impulse response the number of paths should

be clear. The energetic region of a channel, however, is much easier to estimate than

to determine the number of arrival paths. Figure 4.6.1 shows the evolution in time

of a channel impulse response estimate when the communication distance was 1 km.

The delay spread with significant energy is approximately 10 ms. The number of

significant multipath components is not obvious from the channel impulse response

estimate.

The delay spread of the channel with significant energy could be found by inserting

a sequence with good correlation properties (e.g. an M-sequence) into the commu-

nications packet and correlating the received signal with the same sequence. This

algorithm could be efficiently implemented and the delay spread can be determined

automatically. The author knows of no similarly simple techniques to determine the

number of significant arrivals.

Once the number of coefficients per feedforward section is known, the ray-path

model is used to compute the number of arrival paths which fall within a specified

delay extent (i.e. the number of feedforward equalizer coefficients). Recall that Table

4.3.1 shows the expressions for the first five arrivals.
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Figure 4.6.1: Estimate of a time-varying channel impulse response. The data is from
the SPACE08 experiment, with a 1000 m propagation distance from transmitter to
receiver and a RLS channel estimator is used. The color scale indicates the magnitude
of the channel estimate in time and delay. This figure illustrates that the channel
delay spread is simple to approximate, but the number of multipath arrivals is not
apparent.

4.6.2 Information theoretic methods

Description of estimator

Using information theory a method can be derived for determining the number of ar-

rivals directly from the data. The methods explored here assume that the plane-wave

propagation model is valid (narrowband assumption). The key observation of these

methods is that when the received signal correlation matrix, Ru = E{u[n]uH [n]}, and

the observation noise correlation matrix, Rν = E{ν[n]νH [n]}, are both known the

whitened correlation matrix, R−1
ν Ru has P eigenvalues greater than one and K − P

eigenvalues equal to one, where P is the number of paths and K is the number of

receive sensors. An eigenvalue decomposition of the whitened correlation matrix ex-
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actly estimates the number of paths which is equal to the appropriate number of

beams [109].

Unfortunately, neither the observation noise correlation matrix nor the received

signal correlation matrix is known and both must be estimated from the data. The

estimated received signal correlation matrix and the estimated whitened received

signal correlation matrix both have K unique eigenvalues in general [121]. Therefore,

an eigenvalue decomposition of the estimated whitened received signal correlation

matrix does not reveal the number of components directly. Using hypothesis testing,

however, the number of multipath components can be estimated from the eigenvalues

of the estimated whitened received signal correlation matrix [121].

The received signal correlation matrix can be decomposed as

Ru = Ψ + Rν (4.6.1)

where

Ψ = ΦRyΦH . (4.6.2)

Φ is the full column rank array manifold matrix and Ry[n] = E{y[n]yH [n]} is the

path space signal correlation matrix, as defined in eq. (4.4.3). If the transmitted data

symbols are unit energy and white, then

Ry[n] = GH
p [n]Gp[n].

Assuming that Ry is non-singular, the rank of Ψ is equivalently equal to the number

of paths P , the rank of Ry, and the number of columns in Ψ. If Ψ is K ×K, then

the K − P eigenvectors of Ψ are zero.

If the observation noise is white, then Rν has the form

Rν = σ2
νI, (4.6.3)

If the noise is not white, but the noise correlation matrix, Rν is either known
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a-priori or can be estimated, then the received data can be whitened to produce an

equivalent whitened problem

ũ = R−1/2
ν u, (4.6.4)

and

Rũ = R−1/2
ν ΨR−1/2

ν + I. (4.6.5)

In acoustic underwater communication problems neither the noise correlation ma-

trix, Rν nor the signal plus noise correlation matrix Ru is known a-priori and both

must be estimated from the data,

R̂u[n] =
1

N

n∑
m=n−N+1

u[m]uH [m] (4.6.6)

R̂ν [n] =
1

N

n∑
m=n−N+1

uν [m]uHν [m]. (4.6.7)

In eq. (4.6.7), uν are noise only samples, which can be taken during quiet periods

between packets. Eqs. (4.6.6) and (4.6.7) are the maximum likelihood estimates of

the received signal correlation matrix and the observation noise correlation matrix,

respectively, when both the observation noise and the data are described by zero-mean

Gaussian distributions.

In this section, the problem of interest is to estimate the number of significant

multipath components P from the estimated received signal correlation matrix, R̂u.

Assuming the noise is white with unit variance (the noise can be whitened as above)

this problem is equivalent to determining how many of the eigenvalues of Ru are

statistically greater than one, given only the noisy estimate R̂u.

A collection of techniques which solve this problem have their roots in information

theory [121]. The two techniques explicitly discussed are the Akaike Information

Criterion (AIC) [2, 3] and the Bayesian Information Criterion (BIC) [83, 90]. There

has also been a flurry of activity lately by Nadakuditi and others solving this same

subspace rank estimation problem using random matrix theory [67, 69, 68], but these

results are not discussed explicitly here.

106



Both the AIC and the BIC are problems that seek to solve a cost function

parametrized by a positive integer r,

J(r) = −2 log pu(u|ξ̂
(r)

) + π(r), (4.6.8)

where log pu(u|ξ̂
(r)

) is the log-likelihood of u for estimated parameters ξ̂
(r)

and π(r)

is a penalty term related to the number of degrees of freedom in the model.

The parameter vector, ξ(r), contains: the maximum likelihood estimate of the ob-

servation noise variance, (σ̂2
w)ml, the maximum likelihood estimate of the r largest

eigenvalues, (λ̂i)ml i = 1, . . . , r, and the corresponding eigenvectors, (β̂i)ml i =

1, . . . , r of the received signal correlation matrix, Ru. If the received data are drawn

from a Gaussian distribution (i.e. the observation noise and the signal are Gaussian),

the eigenvalues and eigenvectors of the sample received signal correlation matrix are

the maximum likelihood estimates, i.e. [4]

R̂u =
K∑
m=1

β̂mβ̂
H

mλ̂m (4.6.9)

(λ̂i)ml = λ̂i i = 1, . . . , r (4.6.10)

(β̂i)ml = β̂i i = 1, . . . , r (4.6.11)

(σ̂2
w)ml =

1

K − r

K∑
i=r+1

λ̂i (4.6.12)

where the subscript ml indicates the maximum likelihood estimate of the true param-

eter. The maximum likelihood estimates of the elements of ξ̂
(r)

are

ξ̂
(r)

=
[
σ̂2
ν , λ̂1, . . . , λ̂r, β̂

T

1 , . . . , β̂
T

r

]T
(4.6.13)

The total number of degrees of freedom in the parameter vector ξ̂
(r)

is the num-

ber of parameters that can be freely changed where real parameters have one degree

of freedom and complex parameters have two. Without constraints, the number of

degrees of freedom in the parameter vector is 1 from the observed noise variance, r
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from the real valued eigenvalues, and 2rK from the complex eigenvectors, for a total

of 1 + r + 2rK. The eigenvectors are constrained to be unit norm, which reduces

the available degrees of freedom by 2r, and mutually orthogonal which removes an-

other 21
2
r(r − 1). Therefore, the total number of available degrees of freedom in the

parameter vector ξ̂
(r)

is

DoF(ξ̂(r)) = r + 1 + 2rK − 2r − r(r − 1) = r(2K − r) + 1

The difference between the AIC and the BIC is the form of the penalty function.

The penalty function for the AIC is the available number of degrees of freedom in

the parameter vector ξ̂
(r)

. The penalty function for the BIC is the available number

of degrees of freedom in ξ̂
(r)

scaled by half the log of the number of snapshots. The

additional scaling term on the BIC penalty function leads to lower estimates of the

number of observed paths than the AIC (on average) [90].

The parametrized log-likelihood function can be written as [125, 121]

Lr(r) = − log pu(u|ξ̂
(r)

) = N(K − r) log

{
1

K−r
∑K

i=r+1 λ̂i

(
∏K

i=r+1 λ̂i)
1

K−r

}
(4.6.14)

where N is the number of snapshots available. The log of the ratio of the arithmetic

to the geometric means of a noisy data set is a measure of the additional information

gained by the knowledge that true data are all equal to the arithmetic mean of

the observed data [127], i.e. how “surprising” a discovery would be that the true

data are all equal to the arithmetic mean. This interpretation of the parametrized

log-likelihood fits intuitively well for the AIC and BIC measures which attempt to

determine the number of equal eigenvalues of the received signal correlation matrix.

Using the expressions for both the log-likelihood ratio and the penalty function,

the BIC and AIC can be written as

AIC(r) , 2Lr(r) + 2(r(2K − r)) (4.6.15)

BIC(r) , 2Lr(r) + (r(2K − r) + 1) logN (4.6.16)

108



The estimate of the number of observed paths (the rank of the signal subspace) is

P̂AIC = arg min
r

AIC(r) (4.6.17)

P̂BIC = arg min
r

BIC(r) (4.6.18)

The estimate produced using the BIC is consistent, i.e. as the number of snapshots

approaches∞, the estimate converges to the true value. The estimate produced using

the AIC is not consistent [125], but with finite amounts of data, the AIC tends to

give a better estimate of the signal subspace rank than the BIC [121].

Effectiveness of information theoretic methods for determining number of

observed paths

One pitfall of these information theoretic methods is that the signal-subspace di-

mension estimate tends to be higher than the number of paths when the channel

is time-varying. These information theoretic methods use an assumption that the

matrix Φ is constant over the averaging window. For a rapidly varying underwater

channel, this may not be the case.

When the channel is varying in time, the estimated dimension can be greater

than the number of paths. To illustrate this point, consider a unit energy signal that

changes direction halfway through an averaging window, i.e.

u[n] =

 v(θ0) n < Nwin

2

v(θ1) n ≥ Nwin

2
,

(4.6.19)

In the above expressions, v(θi) is the array manifold vector parametrized by the angle

of arrival θi and Nwin is the window length. The time-averaged signal will have an

estimated signal subspace dimension of 2, even though at any time instant there is

only one path present.

This hazard is intrinsic to the framework of these estimators and the only work

around is to shorten the data averaging time. Random-matrix methods attempt to
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accomplish this by minimizing the amount of data needed to estimate the statistics

(see e.g. [69]). For a constantly varying channel, however, there is no window short

enough so the channel appears entirely stationary.

Another issue with reducing the averaging window is the validity of the nar-

rowband assumption. One way to enforce the narrowband assumption when using

wideband data is to first take the discrete Fourier transform (DFT) of the received

signal and then process each resultant frequency bin individually, but the available

data is reduced proportionally to the DFT length. Note that the AIC and BIC are

correctly estimating the observed subspace signal dimension. Unfortunately, in the

case of a time-varying channel, this dimension is not necessarily equal to the number

of observed paths (P̂AIC,BIC ≥ P ). Using these methods may lead one to use more

beams than are strictly necessary, reducing the benefits of beamspace processing.

4.6.3 Generalized χ2 testing

Generalized χ2 random variables

An alternative statistical method for determining the number of beams is from the

atmospheric science community [11] and is based on statistical analysis of χ2 random

variables. A χ2 random variable is the sum of the squares of independent and iden-

tically distributed Gaussian random variables with zero mean and unit variance [70].

Changing the random variables in the sum to circularly-symmetric complex Gaussian

random variables with variance σ2 is a generalization of the χ2 random variable and is

what is referred to in this chapter as a generalized χ2 random variable (also describes

a gamma-distributed random variable).

As an example of a generalized χ2 random variable, consider

κ =
D∑
i=1

|qi|2,

where qi ∼ CN (0, σ2), i.e. qi is circularly symmetric complex Gaussian distributed

with mean zero and variance σ2. This implies that κ is a generalized χ2 random
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variable with

E{κ} = µκ = Dσ2

var(κ) = σ2
κ = 2Dσ4

(4.6.20)

The number of degrees of freedom (DoF) of a χ2 random variable is equal to the

number of independent random variables in the sum. The number of independent

random variables in a circularly complex Gaussian random variable is two: one for

the real part and one for the imaginary. The estimate of the number of paths will

soon be shown to be the number of complex circularly symmetric Gaussian random

variables in the sum, or half the number of degrees of freedom in the generalized χ2

random variable. A way to calculate the number of complex random variables in the

generalized χ2 random variable, κ, is [11]

Pκ =
1

2
D =

µ2
κ

σ2
κ

. (4.6.21)

Using the Rayleigh fading model to create a generalized χ2 random variable

A pertinent example of a generalized χ2 random variable is the sum of the squared

absolute value of the coefficients of a Rayleigh fading channel, i.e.
∑

i |gi|
2. When

a channel is Rayleigh fading, generalized χ2 analysis can be used to determine the

number of channel coefficients which equals the number of paths.

Over narrow frequency ranges, the underwater communication channel appears

approximately Rayleigh fading [53]. The narrowband Rayleigh fading channel model

considered in this section characterizes the fluctuations in each path using one random

variable,

gi(t) = g̃i(t)v(θi)δ(t− τi). (4.6.22)

In the above expression, g̃i(t) is a circularly-symmetric complex-Gaussian random

process, v(θi) is an array manifold vector with angle of arrival θi, and δ(t − τi) is

the path delay. When using a discrete time system, the channel is sampled at times

t = mT , where T is the sampling period and m is an integer.
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Recall from eq. (4.4.3) that the received signal has the form

u[n] = ΦGH
p [n]d′[n] + ν[n] (4.6.23)

Several simplifying assumptions are made throughout this section to clarify the

analysis:

1. The path delays, τi, are multiples of the sampling period and no two paths

have the same delay. These conditions imply that there is exactly one nonzero

coefficient per column of Gp and at most one nonzero coefficient per row.

2. The channel path coefficients, g̃i, are IID and distributed as g̃i ∼ CN (0, σ2
g).

3. Each sensor observes the same channel, Gp[n]. This implies a the array is short

enough so there is not significant path length difference from top to bottom for

any observed paths.

4. The observation noise is spatially and temporally white with zero mean and

variance σ2
ν .

5. The transmitted data symbols are IID with zero mean and unit variance (i.e.

σ2
d = 1).

The first assumption is very approximate, but allows for some interesting results

that are supported by the data. The next two assumptions simplify the analysis

significantly and the effect of relaxing these assumptions is discussed later in the

section. The fourth assumption is accurate in the high SNR regime, but the observed

results do not appear to be sensitive to this assumption. The last assumption is

standard in communications research.

To determine the number of multipath components, a functional of the received

data vector is created,

F [n] = uH [n]u[n]. (4.6.24)

112



Substituting the channel model from eq. (4.6.23) into this functional gives

F [n] = (ΦGH
p [n]d′[n] + ν[n])H(ΦGH

p [n]d′[n] + ν[n]). (4.6.25)

After performing the multiplications the expanded version of the function is

F [n] = d′H [n]Gp[n]ΦHΦGH
p [n]d′[n] (4.6.26)

+ νH [n]ΦGH
p [n]d′[n] + d′H [n]Gp[n]ΦHν + νH [n]ν[n].

In the above expression, the vector of transmitted symbols, d′[n], has time-

invariant statistics and the symbols are IID. Since the data is independent of both

the channel and the noise, terms including d′[n] are replaced by their expected value

with respect to the transmitted data symbols. Over the averaging windows of the

time averaging used to estimate the statistics of the received data, this assumption

does not introduce noticeable errors. Using this substitution, eq. (4.6.26) becomes

F [n] = Tr(ΦGH
p [n]Gp[n]ΦH) + ν[n]Hν[n]. (4.6.27)

The first term is found using the identity of the trace operator, Tr(AB) = Tr(BA).

The second and third terms from eq. (4.6.26) vanish since the transmitted data sym-

bols are zero mean and uncorrelated with the observation noise.

Using the assumption that Gp[n] contains exactly one non-zero entry per column

and at most one non-zero entry per row, GH
p [n]Gp[n] is the diagonal matrix

GH
p [n]Gp[n] =



|g1[n]|2 0 0 · · · 0

0 |g2[n]|2 0 · · · 0

0 0 |g3[n]|2 · · · 0
...

...
...

. . .
...

0 0 0 · · · |gP [n]|2


.

The delay index on the channel coefficients is not shown since there is only one non-
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zero coefficient per path.

Recall that the ith column of the array manifold matrix, Φ, is the array manifold

vectors for a linear array, v(θi). Using the relation, vH(θi)v(θi) = K, eq. (4.6.27)

becomes

Tr(ΦGH
p [n]Gp[n]ΦH) = K

P∑
i=1

|gi[n]|2.

All of these assumptions and matrix manipulations lead to a usable form of the

functional

F [n] = K
P∑
i=1

|gi[n]|2 +
K∑
j=1

|νi[n]|, (4.6.28)

where νH [n]ν[n] is written using sum notation. Both the channel coefficients, gi, and

the observation noise terms, νi, are circularly-symmetric, complex Gaussian random

variables. Therefore, the functional F [n] is the sum of two generalized χ2 random

variables: one for the channel coefficients and one for the noise.

Determining the number of beams from the Rayleigh fading model

Given the number of sensors is K and the number of non-zero channel coefficients

(i.e. the number of paths) is P , the mean, µF , and variance, σ2
F , of the functional,

F [n], are

µF = KPσ2
g +Kσ2

ν (4.6.29)

σ2
F = 2K2Pσ4

g + 2Kσ4
ν . (4.6.30)

The inverse signal to noise ratio is defined as

ρ =
σ2
ν

σ2
dσ

2
g

. (4.6.31)

Applying the same ratio test to determine the number of complex components of a

generalized χ2 random variable from eq. (4.6.21) to the functional, F [n] produces the

relation

PF =
µ2
F

σF
=
K(P + ρ)2

KP + ρ2
. (4.6.32)
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There are three interesting regions of ρSNR for the estimated path count, PF : high

SNR (ρ ≈ ∞), low SNR (ρ ≈ 0), and the maximum path count estimate which occurs

when ρ = K. In the high SNR region, the parameter ρ→ 0, so PF ≈ P , i.e. the path

count estimate equals the number of paths. In the low SNR region, the parameter

ρ→∞, so PF ≈ K, the number of sensors since the noise space is full rank.

For the same channel statistics as the SNR is decreased the estimated number of

paths increases. This could be desirable feature of this estimator since as the SNR is

decreased, the estimator allows for more beams which implies better noise immunity

(if the noise on each beam is assumed to be independent). More beams also implies

more parameters to estimate so components with more variability are not able to

be tracked. Thus, this behavior of the estimator should be taken into account when

designing systems which use χ2 methods for estimating the number of paths.

The DoF count estimate is not a monotonic function of ρSNR, but the relation

PF ≤ P +K (4.6.33)

can be verified by substitution. Equality is achieved when ρ = K. Thus, PF can be

greater than the number of sensors, but only for a very low SNR (i.e. ρ ≈ K).

Another way to estimate the degrees of freedom in a χ2 random variable is pro-

posed in [6, 11, 113, 12] based on the received signal correlation matrix Ru. In this

approach, the estimated number of degrees of freedom is

Pef =
(Tr(Ru))2

Tr(R2
u)

=

(∑K
i=1 λi

)2

∑K
i=1 λ

2
i

(4.6.34)

where λi is the ith eigenvalue of the received signal correlation matrix. In the liter-

ature this method assumes that the received data vector u[n] is a Gaussian random

vector, where each element is zero-mean and unit variance, which is not the case for

the underwater communication problem. This function of the eigenvalues, however,

turns out to be a reasonable estimator of the number of paths in the underwater

channel; The numerator and the denominator are evaluated independently to justify
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that eq. (4.6.34) is a good estimator of the number of paths.

The trace of the received signal correlation matrix is equivalent to the mean of

F [n], through the relation

E{F [n]} = E{uH [n]u[n]} = E{Tr(u[n]uH [n])} = Tr(Ru). (4.6.35)

Thus, the numerator of Pef is the square of the expected value of F [n], which is also

the numerator of PF .

The denominator of eq. (4.6.34) is more complicated to justify. A first step is

to substitute the received signal model from eq. (4.6.23) into the expression for the

received signal correlation matrix,

Ru = E{u[n]uH [n]} = E{(ΦGp[n]d′[n] + ν[n])(ΦGp[n]d′[n] + ν[n])H}. (4.6.36)

Evaluating the expectation with respect to the transmitted symbols, the noise, and

the channel coefficients, the received signal correlation matrix is

Ru = σ2
gΦΦH + σ2

νI, (4.6.37)

where the noise is still assumed to be spatially and temporally white. Since E{F [n]} =

Tr(Ru), the terms in eq. (4.6.37) correspond exactly to the terms in eq. (4.6.29).

Comparing terms, the trace of the matrix product, ΦΦH is

Tr(ΦΦH) = KP. (4.6.38)

Using eq. (4.6.37) and eq. (4.6.38) the expression for Tr(R2
u) becomes

Tr(R2
u) = Tr

(
(σ2

gΦΦH + σ2
νI)2

)
= σ4

gαef + 2KPσ2
gσ

2
ν +Kσ4

ν . (4.6.39)
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In this expression, the quantity αef is defined as

αef = Tr
(
(ΦΦH)2

)
. (4.6.40)

Recall that the columns of the matrix Φ are array manifold vectors, which can be

parametrized by an AoA θ. The ith column of Φ is denoted as v(θi). The expression

for αef is

αef =
P∑
k=1

P∑
`=1

∣∣vH(θk)v(θ`)
∣∣2 = K2P + 2

P−1∑
k=1

P∑
`=k+1

∣∣vH(θk)v(θ`)
∣∣2 = K2P + 2γef .

(4.6.41)

The expression for γef depends on the angles θ1, . . . , θP which depend on the

particulars of the communication channel. Thus there is no way to further simplify

the expression for γef . The parameter γef , however, can be bounded by

0 ≤ γef <
1

2
K2P (P − 1),

which implies bounds for αef ,

K2P ≤ αef ≤ K2P 2.

The lower bound is achieved when all of the array manifold vectors are orthogonal,

i.e. vH(θk)v(θ`) = 0 when k 6= `. The upper bound is achieved when all of the array

manifold vectors are the same, i.e. v(θ1) = v(θ2) = · · · = v(θP ).

Using the derived expressions for the numerator and denominator, the estimate

of the arrivals, Pef is

Pef =
(Tr(Ru))2

Tr(R2
u)

=
K2(P + ρ)2

αef + 2KPρ+Kρ2
(4.6.42)

In the low-SNR region (ρ → ∞), regardless of the path AoA, the number of

arrivals estimate Pef ≈ K. In the high SNR region (ρ → 0), the result depends on

the alignment of the array manifold vectors. When the array manifold vectors are
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orthogonal Pef ≈ P . When the array manifold vectors are not orthogonal in the high

SNR region, then Pef < P . In the degenerate case when all of the array manifold

vectors are equal, Pef = 1.

The dependence of Pef on the AoA in the high SNR regime has some nice inter-

pretations and nice results. When two AoA are nearly equal, the DoF count estimate

is reduced since fewer beams are needed to capture energetic paths. This is generally

a positive results since highly time-varying paths will likely be ignored. Reducing

the number of beams does place additional constraints on DFE since there are fewer

adaptive parameters, so the end effect on residual error is unclear.

Pef is a monotonically decreasing function of the SNR, so there is no local max-

imum like there was for PF . As the SNR decreases, there is a smooth transition of

the number of paths estimated from the high SNR estimate to K.

An additional result is that the term 2Tr(R2
u) is an upper-bound of σ2

F ,

σ2
F = K2Pσ4

g +Kσ4
ν

≤ K2Pσ4
g + 2KPσ2

gσ
2
ν +Kσ4

ν

≤ αefσ
4
g + 2KPσ2

gσ
2
ν +Kσ4

ν

= Tr(R2
u). (4.6.43)

The expression in the second line is the lower bound of Tr(R2
u). Equality of all

terms is achieved when ρ = ∞, i.e. at very low SNR. In other SNR regions, σ2
F <

Tr(R2
u). Using the equality relation from eq. (4.6.35) and the inequality relation from

eq. (4.6.43), the number of arrival estimators are related by

Pef ≤ PF . (4.6.44)

Estimating the number of paths from the received signal

The true statistics of the received signal and noise are not known and must be es-

timated from the received signal. In this subsection, estimators based on estimated

statistics are presented.
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One method for estimating the number of paths from the data is to directly

estimate the statistics of F [n], a modified version of the method of moments from

[6, 11]. Replacing the mean and variance of F [n] in eq. (4.6.32) with estimates based

on a length M sliding window gives the estimate of the number of arrivals,

P̂F =

(
1
M

∑M
i=1 F [n− i]

)2

(
1
M

∑M
i=1 F

2[n− i]
)
−
(

1
M

∑M
i=1 F [n− i]

)2 . (4.6.45)

This method circumvents the need for explicit calculation of the PDF of F but there

is no guaranteed upper bound on the estimated number of paths.

A second method for estimating the number of paths from the received signal is

to create an estimate of the received signal correlation matrix, R̂u. This estimator

uses the function of the eigenvalues from eq. (4.6.34), with the estimated correlation

matrix eigenvalues, λ̂i, in place of the true correlation matrix eigenvalues, λi. This

estimator is

P̂ef =

(
Tr(R̂u)

)2

Tr(R̂
2

u)
=

(∑K
i=1 λ̂i

)2

∑K
i=1 λ̂

2
i

. (4.6.46)

The last section stated that λ̂i is the maximum likelihood estimate of λi. Therefore,

the path count estimate P̂ef is a maximum likelihood estimate of Pef . Due to the way

they are computed the number of arrival estimates using both both the true eigen-

structure Pef and the estimated P̂ef are guaranteed to be within 1 ≤ Pef , P̂ef ≤ K.

Effectiveness of χ2 methods for determining number of observed paths

The use of generalized χ2 techniques for creating number of path estimators has

distinct advantages over the information theoretic methods. There is not the same

requirement that AoA for the different paths are time-invariant when using gener-

alized χ2 techniques: the method of moments estimator, P̂F ≈ PF , has no explicit

dependence on the AoA and the eigenvalue ratio estimate, P̂ef ≈ Pef , is upper bounded

by the number of paths in the high SNR region.

The generalized χ2 methods have less dependence on the variation of the AoA
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than the information theoretic methods since both rely on eigenvalues of the received

signal correlation matrix. The information theoretic methods, however, are based on

a successive ratio test [121], so the change in the individual eigenvalues (caused by a

change of an AoA) can drastically change the estimate. By contrast, the generalized

χ2 rely only on aggregate eigenvalues, so individual eigenvalues (and thus the changes

in AoA) play a decreased role in determining the number of paths.

There are some things to keep in mind when using generalized χ2 analysis for

underwater channels. First, the underwater channel is only approximately Rayleigh

fading [52, 130], so the proposed channel model can be inaccurate. This causes some

degradation in the performance [11], but the effect can be mitigated by using narrower

DFT bins so that the Rayleigh fading assumption is more accurate [53]. Also, each

of the multipath arrivals does not have the same energy, which reduces the accuracy

of the estimator. Fortunately, eighty to ninety percent of the degrees of freedom are

captured using χ2 types of estimation methods [39].

4.7 Experimental evidence

In this section, experimental evidence is presented for methods of computing the

beam weights and the number of beams to use.

4.7.1 SPACE08 experiment setup

The SPACE08 was performed off the coast of Martha’s Vineyard, MA from Oct. 14th

through Nov. 1st, 2008. The water depth was approximately 15 meters, the transmit-

ter was approximately 4 meters from the sea floor, and the top of the receive arrays

were about 3.25 meters above the sea floor. Figure 4.7.1 illustrates the experimental

setup.

The carrier frequency was fc = 12.5 kHz, the bandwidth was B = 6.51 kHz, and

the sampling frequency was fs = 39.06 kHz. The transmitted signal was the first

20,000 symbols of a repeated binary phase shift keyed (BPSK) encoded, 4095-length

M-sequence.
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Figure 4.7.1: Setup of SPACE08 experiment

Before processing, the carrier was removed, the data was low-pass filtered, and

the data was down-sampled to two samples per symbol. Time alignment of the signal

was achieved through the use of an M-sequence timing signal at the beginning of the

packet.

The receiver was a 24-element vertical array with 5 cm element spacing placed.

The array was 200 meters from the transmitter to the southwest.

Every two hours, all of the acoustic signals being tested for the experiment were

sent sequentially. This entire collection of signals made up one time epoch, which are

referred to by the time and Julian day they were transmitted. Each epoch is labelled

by the Julian date and time of the start of transmission of its first packet.

4.7.2 Comparing methods for computing beam weights

Three epochs were chosen from different days with a variety of sea surface conditions:

day 297 at time 1800, day 294 at time 1200, and day 300 at time 0800. These three

epochs range from calm on day 297 to high stormy seas on day 300. Each of the

methods described in Section 4.5 was tested for each one of these epochs, as was the

full sensor-space processing and sensor-space processing using a number of sensors

equal to the number of beams.

The DFE parameters were chosen as follows: the number of acausal coefficients

in each feedforward section is La = 10. The number of causal coefficients in each

feedforward section is Lc = 40. The number of feedback filter coefficients is Lfb = 23.
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This allowed the feedforward filter to capture most of the signal energy and the

feedback filter to cancel most of the ISI. The received signal was sampled twice per

symbol (i.e. the fractional sampling rate was 2).

An EW-RLS algorithm was used to estimate the DA-DFE equalizer taps. In order

to ensure that the observed results were not an artifact of the choice of the exponential

weighting factor, λ, seven different values were tested from λ = 0.996 to λ = 0.9995.

The minimum mean squared error results across all λ are shown in the figures below.

Using the ray-path modeled described in Section 4.3 with the experiment geom-

etry, the number of significant arrivals was estimated to be seven. Thus, 7 beams

were created using each of the proposed methods for determining the beam weights

(except for the time-aligned uniform beams which only used 5). The broadside angle

is defined to be at 90o with the surface at 0o and the seafloor at 180o. The elevation

angles examined for the beamspace methods were from 75.5o to 104.5o. For the DPSS

method, the angular spread used was 70.3o to 109.7o.

For the hybrid methods, the number of beams for the initial beamformer was

chosen to be 12. This number was chosen because it was higher than the estimated

number of arrivals but was much less than the number of sensors.

The mean squared error (MSE) at the output of the equalizer, is , εMSE, was the

metric used to compare the different methods. This MSE is

εSDE =
1

N

N∑
n=1

|d[n]− d̃[n]|2

|d[n]|2
, (4.7.1)

where d[n] is the transmitted symbol and d̃[n] is the filtered data before the symbol

decision.

Due to the large array gain, the bit error rate (BER) was nearly zero, even as the

SNR was degraded in all examined cases. The SNR was degraded by adding a scaled

version of an ambient noise signal recorded during a silent period in the epoch.

Figure 4.7.3 shows the results from the day 297, time 1800 epoch, day 294, time

1200 epoch, and day 300, time 0800 epoch. The input SNR is the ratio of the measured

incoherent signal energy to noise energy before equalization. The observed input SNR
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Table 4.7.1: Input signal to noise ratio for each of the data epochs examined from
the SPACE08 experiment.

Epoch Input SNR

Day 297, time 1800 41.2 dB
Day 294, time 1200 37.2 dB
Day 300, time 0800 35.2 dB

for each epoch is given in Table 4.7.1.

The results show that the adaptive methods and the hybrid adaptive generally

outperform the non-adaptive methods and generally the DPSS methods outperform

the other non-adaptive methods. As the sea surface conditions become rougher,

adaptive methods tend to have the lowest MSE. The non-adaptive methods have an

assumed angular spread that is violated when the sea-surface becomes too rough.

The performance of the reduced sensor adaptive method (which uses 12 sensors to

create the 7 adaptive beams) reduces relative to the non-adaptive hybrid methods as

sea surface condition become rougher. This result implies that using hybrid methods

provides less sensitivity to surface conditions than simply ignoring sensor data.

The MCM and MVDR methods are the only methods studied which takes the

observed noise correlation structure into account, so one would expect them to out-

perform the other methods. The reason they do not is that methods such as MVDR

and MCM were designed with the goal of rejecting unwanted signals. The goal of a

communication system is to accept as many desirable signals as possible. That the

MCM method is slightly worse than that of the uniform beams is not surprising since

the uniform beams gather more energy from the angular range of interest than the

MCM method.

For comparison of computationally similar methods, seven of the twenty-four sen-

sors were used as the input to a multichannel equalizer. Several configurations of the

seven sensors were tested and the best configuration for each epoch is shown on the

figures. In all cases, the best seven sensors perform at least 2 dB worse than either the

proposed methods or the full sensor space. Thus, for the same computational com-

plexity, the proposed methods improve the performance dramatically and compete
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Figure 4.7.2: Comparison of beamforming methods using SPACE08 experimental
data. The left column ((a), (c), and (e)) contains the beamspace and adaptive meth-
ods. The right column ((b), (d), and (f)) contains the non-adaptive methods. (a)
and (b) are results using data taken on day 297, time 1800, calm conditions. (c) and
(d) are results using data taken on day 294, time 1200, smooth, rolling waves. (e)
and (f) are results using data taken on day 300, time 0800, very stormy conditions.
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Figure 4.7.3: Results from SPACE08 comparing the beamspace, adaptive, non-
adaptive, and hybrid methods for three sea surface conditions: (a) calm [day 297,
time 1800] (b) rolling waves [day 294, time 1200] and (c) [day 300, time 0800]. In all
three cases, the relative performance of the beamspace processing is reduced as the
SNR is reduced. For the other methods the performance is approximately equivalent
with the adaptive methods having the best performance as the sea surface conditions
become rougher.
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Table 4.7.2: Description of beamforming methods labels.

Legend Entry Description

All Sensors Complete sensor space using all available sensors.

Reduced Sensors Sensor space using 7 best sensors.

Uniform 7 uniformly weighted steered beams steered to null of
neighbor.

Time-aligned Uniformly weighted beams only equalized in region of ex-
pected channel energy.

DPSS 7 Discrete prolate spheroidal beams with angle span calcu-
lated using ray-path model.

Eig Beams composed of eigenvectors corresponding to largest 7
principle components of received signal correlation matrix.

MCM 7 Multiple constraint beams steered in same directions as
uniform weighted beamformer.

Fully Adaptive Adaptive beamformer with 7 beams.

ADP Reduced Adaptive beamformer with 7 beams using only 12 sensors

ADP DPSS 12 beam DPSS beamformer followed by 7 beam adaptive
beamformer.

ADP Eig 12 beams corresponding to largest 12 principle components
of the received signal correlation matrix followed by 7 beam
adaptive beamformer.
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Figure 4.7.4: Procedure for estimating the subspace dimension from data.

quite favorable with the full sensor space results.

All results presented in this section are sensitive to the choice of the exponential

weighting factor, λ. Finding the optimal λ for a given channel is beyond the scope

of this work. Further work on adaptively tracking the optimal exponential weighting

factors is merited.

4.7.3 Comparing methods for estimating number of beams

In this subsection, the methods for computing the number of beams are compared

using experimental data. This data used is taken from the SPACE08 experiment,

from the day 297, time 1800 epoch.

To determine the number of beams, the data is windowed using a Hann window

(to reduce side-lobe levels) and then passed through a discrete Fourier transform.

The statistics and correlation matrix are then calculated for each temporal frequency

bin which are then used to estimate the number of arrivals. This process is illustrated

in Figure 4.7.4.

One way to increase the effective averaging times is to average several estimates

together. In figure 4.7.5 estimates are shown for temporal frequencies from 0 to fs/2

for four different averaging windows: 50, 100, 500, and 1000 sample windows. The

carrier frequency is shown in a thick dashed lines and the signal bandwidth is shown

in black dash-dot lines. A 512 point DFT was used with an overlap of 256 samples and

a total data block length of 500,000 samples. The carrier frequency is fc = 12.5 kHz
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Table 4.7.3: Estimated number of arrival estimates across bandwidth of transmitted
signal (SPACE08 data). The averaging window indicates the amount of data used to
make an individual estimate. The estimates are averaged across the entire 500,000
sample data-set. The window overlap amount is half of the averaging window length.

Estimation Method

Data Set Ave. Win AIC BIC DoF - MM DoF - Eig

Day 297, Time 1800

50 22.18 20.06 2.33 2.14
100 22.39 20.84 2.83 1.96
500 22.85 22.42 4.34 1.80
1000 22.90 22.71 4.82 1.77

and the sampling frequency is fs = 39.06 kHz.

The subspace estimation results show a big difference between the information

theoretic methods and the other methods. The reason for the gap between the meth-

ods is due to channel motion, which causes the AIC and BIC methods to produce a

high estimate of the signal subspace due to averaging of the moving signal.

To determine which, if any, of the studied methods effectively estimates the useful

number of beams, the MSE at the output of the multichannel DFE is compared

when different numbers of beams are used. This experiment is performed for two of

proposed beam-weight methods: the DPSS beams and the fully adaptive beams. The

results are shown in Figure 4.7.6.

The results shown in figure 4.7.5 for show a leveling off around the number of

beams corresponding to the number of arrivals predicted by the ray-path model. The

knee of the curves occurs before this value and appears to be well estimated by the

χ2 methods. The estimates produced using the AIC and BIC methods appear to be

much higher than the data indicates are useful.

At high SNR, the DPSS method continues to improve slightly as the number

of beams is continually increased, but at low SNR both methods show a distinct

leveling off at around seven beams. The χ2 methods provide a reliable, data driven

method for computing the number of beams needed to achieve good performance in

this experiment.

An interesting feature of these plots is that the number of beams used could also
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Figure 4.7.5: Number of arrival estimation for data gathered on day 297, time 1800
at the SPACE08 experiment. All results presented use 500, 000 signal sample, with
6 samples per transmitted symbol. Four different methods are presented: AIC is the
Akaike information criterion, BIC is the Bayesian Information Criterion, DoF is the
generalized χ2 method using the correlation matrix, and DoFMM is generalized χ2 the
method of moments. Different averaging windows are used: (a) length 50 averaging
window, (b) length 100 averaging window, (c) length 500 averaging window, and (d)
length 1000 averaging window. samples is used and in (b) an averaging window of
1000 samples is used. There was an overlap length of half the averaging window.
The solid black line shows the carrier frequency and the dash-dot lines show the
transmitted signal bandwidth.
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Figure 4.7.6: Comparison of mean squared error verses the number of beams for (a)
DPSS beamformer and (b) Fully Adaptive beamformer. The black dashed line is the
number of arrivals estimated by the ray-path model.

130



be reduced without too much loss in performance. Thus, if computational complexity

is of chief concern, and often it is, the number of beams could be reduced, especially

at high SNR, to as low as three beams with only about 1dB loss of performance.

4.7.4 MACE10 experiment setup

The SPACE08 was performed off the coast of Martha’s Vineyard, MA on July 23,

2010. The signals were transmitted at a depth of around 80m to an 12 element

vertical array receiver with 5 cm element spacing, which was attached to a buoy. The

transmit hydrophone was an ITC-1007, which was towed from a distance of 500 m

from the receive array to a distance of 4500m and back. There were two tows in this

experiment. The data presented is from the second tow.

The carrier frequency of the transmitted signal was fc = 13 kHz, the bandwidth

was B = 4.88 kHz, and the sampling frequency was fs = 39.06 kHz. The transmitted

signal was the first 50,000 symbols of a repeated binary phase shift keyed (BPSK)

encoded, 2047-length M-sequence.

4.7.5 MACE10 experimental results

The MACE10 experiment is very similar to the SPACE08 experiment in terms of

the type of data transmitted and the hardware used. The key difference between

the two experiments is that the MACE10 experiment had a moving transmitted (and

stationary receiver). Thus, there is more channel variability in the MACE10 data

compared with the SPACE08 data.

Figure 4.7.7 shows the results of the various beamforming methods on the MACE10

data set. Two beamforming methods were not tested on the MACE10 data set, the

reduced adaptive beamformer (using fewer sensors to do adaptive processing) and the

MCM beamformer. All of the data shown here used 5 beams for beamforming.

In figure 4.7.7, the adaptive methods all have a rapid decrease in performance as

the SNR is lowered. When compared with the non-adaptive beamforming methods,

shown in Figure 4.7.8. This reduction in performance is due to a sudden instability
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Figure 4.7.7: Comparison of beamforming methods using MACE10 experimental
data. The left column ((a), and (c)) contains the beamspace and adaptive meth-
ods. The right column ((b) and (d)) contains the non-adaptive methods. The two
rows represent different data sets, taken two minutes. The first column was taken
at time 1810, and the second at time 1812. Note that the adaptive methods have a
significant, relative loss of performance at low SNR.
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Figure 4.7.8: Results from MACE10 comparing the beamspace, adaptive, non-
adaptive, and hybrid methods for two different data packets: (a) at time 1810 (b)
at time 1812. Both of these results show the relative performance degradation of
the adaptive results compared with the non-adaptive results. This is due to the
instabilities in the adaptive algorithm forcing the use of longer averaging windows.

within the adaptive algorithm. This results in a jump in the mean square error

observed without any immediate correction. This effect can be seen in Figure 4.7.9.

From the results, there is an apparent problem with the adaptive beamforming

methods for certain values of the parameters. Further investigation is needed to fully

characterize this phenomenon and to determine mitigating techniques.

4.8 Conclusions

This chapter investigated beamspace processing for a multichannel DFE. Assuming

white spatial and temporal observation noise, the optimal beams for unknown but

bounded arrival angles were found to be the discrete prolate spheroidal sequences.

This set of beamforming weights was observed to be very tolerant to environmental

mismatch since multiple beams covered the same angular range.

A variety of other beamforming methods were proposed for comparison with the

DPSS beams. These include uniform beams, time-aligned uniform beams, MVDR

(MCM) beams, adaptive beams, and hybrid methods. Using the SPACE08 experi-
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Figure 4.7.9: Results from MACE10 comparing MSE for the data set from time 1812
at an SNR of 10dB with λ = 0.996. (a) shows the adaptive and beamspace results,
(b) shows the non-adaptive methods, and (c) compares the two. Notice that all of
the adaptive methods have a point where the algorithm becomes unstable and the
estimates are no longer valid.
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mental data, all of the proposed methods were shown to have similar mean squared

error performance on calm days and the adaptive methods, previously proposed by

Stojanovic et al, outperform all other methods when the channel was quickly varying.

The adaptive methods outperformed the non-adaptive methods in this case because

the adaptive beamformer could adaptively change the effective number of beams and

stormy conditions caused the observed angle bound to be larger than the bound used

to compute the non-adaptive beams.

The proposed method of using DPSS beam weights had lower computational com-

plexity than the fully adaptive approach proposed by Stojanovic because the beam

weights can be computed offline. Furthermore, the proposed non-adaptive methods

did not exhibit the same non-linear instabilities observed when using the fully adap-

tive approach.

Several methods were investigated for estimating the number of arrivals from the

data including information theoretic methods (AIC and BIC), generalized χ2 methods

for finding the numbers of degrees of freedom, and ray-path modeling of the multipath

arrivals to calculate the number of arrivals. Derivations were shown detailing the

effectiveness of generalized χ2 methods for determining the number of beams to use.

The methods for determining the number of beams were compared using the

SPACE08 experimental data. The generalized χ2 methods were found to have the

best estimate of the appropriate number of beams to use based on the mean squared

error. The ray-path modeling methods also provided a reasonable estimate, but one

that is slightly higher than is necessary for the data studied.
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Chapter 5

The effect of fixing channel model

order on equalizer performance

5.1 Introduction

Underwater wireless communication hardware is designed to be used in a variety of

environments. Without knowledge of the particular underwater operating environ-

ment, some parameters, such as number of equalizer coefficients or channel delay

spread, may need to be hardwired for system usability. This chapter examines the

errors introduced when the number of coefficients in a channel model used to cre-

ate equalizer coefficients differs from the number of channel coefficients in the true

channel. The analysis presented in this chapter is a special case of the effective noise

analysis from Chapter 3. The structure of this special case facilitates a special com-

pensation algorithm that improves performance but which could not be used in the

more general case. In this chapter, the channel estimation errors are due to model

order mismatch and the observation noise is ignored.

The reverberation time of the channel can range from less than ten to over hun-

dreds of milliseconds and can change over time. This variation can make estimating

the channel length very challenging. Underestimating the length of a channel can

wreak havoc on equalizer performance [58]. Fortunately, the noise caused by using a

different number of channel coefficients in the modeled channel than there are in the
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true channel can be estimated and used to improve equalizer performance.

This chapter focuses on analyzing changes in equalizer performance due to channel

length estimation errors. Studies to date on this topic have been highly empirical

and the solutions have been somewhat ad-hoc. The goal of this chapter is to provide

an intuitive analysis that explains shortcomings of previously proposed solutions and

points to new solutions for the LE and the DFE. The analysis in this chapter explains

the increase in mean squared error of the equalized signal due to the use of a different

number of coefficients in the modeled channel than in the true channel. The results

do not include channel estimation error which will further increase the MSE. An

algorithm is presented to include unmodeled channel coefficients in the equalizer

coefficient calculations which reduces the output MSE. Experimental data is used to

validate the proposed algorithm.

5.2 Assumptions

To streamline the analysis and emphasize the desired effects, three common assump-

tions about the transmitted data and observation noise are made in this chapter:

1. The transmitted data is modeled as samples of a discrete white random process

with unit variance. For a length M transmitted data vector d[n], this implies

E{d[n]dH [n]} = IM .

2. The observation noise and the transmitted data are uncorrelated. This implies

that for a complex, baseband noise vector ν ′[n] and a transmitted data vector

d′[m], E{ν[n]dH [m]} = 0.

3. The estimates of past data are assumed to be perfect, i.e. d̂ = d, removing

the error dependence from data estimation and isolating the channel length

estimation errors.

4. The channel estimate is assumed to be perfect for the specified number of chan-

nel coefficients. Only errors from having a different number of coefficients in the
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model than in the true channel are considered; other types of channel estimation

error are not considered.

5. The channel impulse response is assumed to be of finite extent (FIR).

The first three assumptions are quite common and do not lessen the generality or

usefulness of the derived results. The fourth assumption is made to focus the methods

on compensating for channel length mismatch. The last assumption is reasonable

given observed experimental data. For the remainder of this chapter, time index is

dropped for notational simplicity.

The channel convolution matrix, G described in Section 2.2 is important to the

derivations in this chapter. To simplify discussion, the rows of the channel convolution

matrix are labeled as

GT =
[
g̃−Lc−Nc+2 . . . g̃0 . . . g̃La+Na

]
, (5.2.1)

where the index is a relative offset from the zero column, corresponding to the data

symbol currently being estimated (i.e. d0).

5.3 Approach

The central question of this chapter is “How does an incorrect assumption about

the number of channel coefficients affect equalization?” To answer this question,

the equalizer coefficients computed using an incorrect channel length assumption are

compared with the equalizer coefficients calculated using the true channel length.

As discussed in Section 2.2, convolution can be written as a matrix multiplication.

The true channel convolution matrix can be split into the sum of an estimated channel

convolution matrix and a delta offset,

G = Ĝ + ∆G. (5.3.1)
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Recall from Section 2.4 that the linear equalizer coefficients can be found using

hlin[n] = [GH [n]G[n] + Rν ]−1g∗0, (5.3.2)

and the DFE equalizer coefficients can be found using

hff [n] = [GH
0 [n]G0[n] + Rν ]−1g∗0 (5.3.3)

hfb[n] = −GH
fb[n]hff [n]. (5.3.4)

Using the expression from eq. (5.3.1) with (2.4.9) and (2.4.20), the effect of chan-

nel estimation errors is observable in both the equalizer coefficients and the mean

squared error (MSE). This formulation is not specific to channel length error esti-

mation and can be generalized to other types of errors, such as wrongly guessing a

sparsity constraint. The focus in this chapter is on channel length errors since the

analysis points to a tractable solution.

Notation is used to highlight the difference between quantities computed using

the true channel parameters from quantities computed using a estimated or assumed

channel parameters. If the true channel has N coefficients, the channel impulse

response is g[n] = [g[n, 0], g[n, 1], . . . g[n,N − 1]]T . Similarly, if the estimated

channel has length M the estimated channel impulse-response is

ĝ[n, i] =

g[n, i]

0

i < N

i ≥ N, when M > N
. (5.3.5)

The vector ĝ is defined as

ĝ[n] = [ĝ[n, 0] ĝ[n, 1] . . . ĝ[n,M − 1]]T , (5.3.6)

and the estimated channel convolution matrix, Ĝ is the estimated channel vectors

padded with zeros so that the result is the same when multiplying the Ĝ
H

d as when

convolving the estimated channel with the transmitted data. Now, from eq. (5.3.1),
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∆G is computed as G− Ĝ, where Ĝ will have rows with all zero elements appended

appropriately so the two matrices are the same dimension.

Note that in both eq. (2.4.9) and eq. (2.4.20), the channel convolution matrix ap-

pears as a product with itself and with multiplication by a selection matrix. Padding

this matrix with zero columns and appropriately modifying the selection vector so it

acts on the same column of G does not change the result.

In the case of overestimation of the channel length ∆G = 0 so G = Ĝ. Thus,

under the described conditions, overestimating the channel length does not increase

the MSE of the equalizer. This assumes that channel impulse response coefficients

are perfectly known for the assumed channel length. In practice the expectation is

estimated through time averaging which increases the MSE [66], but these effects are

not taken into account in this chapter. Underestimating the channel increases the

MSE (even with perfect channel knowledge) due to the unmodelled ISI. The next

sections explore the effects of assuming too short of a channel length.

5.3.1 LE analysis

Change in equalizer coefficients

The analysis of a LE is started by first rewriting the optimal equalizer coefficients as

an estimate plus an offset

hlin = ĥlin + δhlin, (5.3.7)

where ĥlin are the coefficients derived from using the estimated channel, Ĝ. The

expression for ĥlin is

ĥlin = [Ĝ
H

Ĝ + Rν ]−1ĝ∗0. (5.3.8)

Using eq. (5.3.1), this equation can be rewritten as

ĥlin = [(G−∆G)H(G−∆G) + Rν ]−1ĝ∗0

= [GHG−GH∆G−∆GHG + ∆GH∆G + Rν ]−1ĝ∗0. (5.3.9)
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To simplify the derivations, the following quantities are defined

Q = GHG + Rν (5.3.10)

W = GH∆G + ∆GHG−∆GH∆G (5.3.11)

ĝ0 = g0 − δg0. (5.3.12)

Note that both Q and W are Hermitian. Using these substitutions, the equation

for the coefficients becomes a function of the difference between the terms from the

true channel, Q, and the error terms, W. The definition of W includes cross terms

between the true channel and the channel estimation error that have been missing

from previous analysis in the literature.

Eq. (5.3.9) can be rewritten as

ĥlin = [Q−W]−1(g0 − δg0)∗

= Q−1g∗0 −Q−1δg∗0 + Q−1[I−WQ−1]−1WQ−1(g0 − δg0)∗

= hlin −Q−1δg∗0 + Q−1[I−WQ−1]−1WQ−1(g0 − δg0)∗. (5.3.13)

The second equality comes from applying the Woodbury identity. The third equality

comes the expression for the LE coefficient matrix in eq. (2.4.9). Rearranging terms,

the form of the perturbation of the equalizer coefficients is found to be

δhlin = Q−1[I−WQ−1]−1WQ−1ĝ∗ −Q−1δg∗0. (5.3.14)

The term δg0 is a result of using a longer equalizer than channel estimate. If the

equalizer is the same length or less than the estimated channel, and the only channel

estimation errors are due to length underestimation, this term is zero. A common

engineering practice is to use equalizers that are shorter than the channel estimate

delay spread. Following this practice, δg0 = 0 for the remainder of this chapter. The
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final form of the change in the equalizer coefficients is

δhlin = Q−1[I−WQ−1]−1WQ−1g0

= [Q−W]−1Whlin, (5.3.15)

i.e. the offset of the equalizer coefficients from the MMSE solution is a linear combi-

nation of the MMSE solution (equalizer coefficients) where the weighting is a function

of the channel estimation error.

Change in MAE

This section describes how the channel length estimation errors change the minimum

achievable error (MAE) assuming knowledge of the channel impulse-response coef-

ficient values, if not their number. The first step is to calculate the mean squared

error using the estimated filter coefficients. The MAE term is then isolated using

eq. (2.4.12). The terms which are not included in the MAE are referred to as the

excess error.

The estimated error can be written as

êlin = ĥ
H

u− d. (5.3.16)

and then the expected mean squared error can be written as

E{|êlin|2} = E{|ĥ
H

u− d|2} (5.3.17)

= E{ĥ
H

uuHĥ− ĥ
H

ud∗ − duHĥ + dd∗}. (5.3.18)

Using the assumption that σ2
d = E{dd∗} = 1 and the relations from eq. (2.2.5) and

ĥ = hlin − δh, eq. (5.3.18) simplifies to

E{|êlin|2} = 1− gT0 [GHG + Rν ]−1g∗0 + δhH [GHG + Rν ]δh. (5.3.19)

Notice that the first two terms are the MAE, σ2
0,lin. Substituting the relation from
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eq. (5.3.15) into eq. (5.3.19) produces an alternate form of the expected MSE,

E{|êlin|2} = σ2
0,lin + (Q−1[I−WQ−1]−1WQ−1g0)HQQ−1[I−WQ−1]−1WQ−1g∗0

= σ2
0,lin + hlinW

H [I−WQ−1]−HQ−1[I−WQ−1]−1Whlin. (5.3.20)

Note that the matrix Q is Hermitian and positive definite.

The matrix

A = WH [I−WQ−1]−HQ−1[I−WQ−1]−1W (5.3.21)

is Hermitian and positive semidefinite, so the quantity hlin
HAhlin ≥ 0. This last term

is the excess error introduced by underestimating the channel length. This result is

similar to the result presented in [75], except here there is an apparent structure of

the excess error.

Interpretation of results

So far, the effect of underestimating the channel length on the linear equalizer coef-

ficients and the MAE has been described. This analysis has assumed the use of the

CEB equalization algorithm since there is no concept of channel length included in

the DA equalization algorithm.

In the matrix W from eq. (5.3.11), the term ∆GH∆G always has a strong di-

agonal component equal to the energy (2-norm) in the unmodelled coefficients. The

regularization term proposed by Lee and Cox [58] can be viewed as a very crude

approximation to this cross term. Preisig [75] explicitly estimates this term but does

not capture the cross terms.

The cross terms Ĝ
H

∆G and ∆GHĜ that appear in the W matrix provide a

measure of the interaction between the missing coefficients and the estimated channel.

Specifically, if the channel is sparse and most of the coefficients are clustered together

with one outlier, the cross terms indicate how much the outlier will interact with the

channel. When there are at least La + Lc zeros (i.e. number of zeros equal to the

144



equalizer length), the cross terms are zero. In this case, the only remaining term in

W is ∆GH∆G, which can be folded into the noise correlation matrix, as in [75].

Compensating for estimation error

Using the assumption that the transmitted data is white, ∆G can be estimated using

the estimated channel convolution matrix

εlin = Ĝ
H

d̂− u. (5.3.22)

Right multiplying both sides by d̂
′H

, where d̂
′
is an estimated transmitted data vector

that is twice the length of the equalizer (assuming all estimates are correct) and

substituting for u using eq. (2.2.5) produces

E{εlind′H} = E{Ĝ
H

dd′H − (GHd + ν)d′H}

= (G′ − (∆G′))HI−G′HI

= ∆G′H . (5.3.23)

In these equations, G′ is the true channel convolution matrix with a length of twice

the length of the equalizer (length of d′) and ∆G′ is the offset matrix with this same

length parameter. The second equality follows from eq. (5.3.1).

The expression for the MSE from Preisig’s work [75] has a form which is missing

the cross terms,

E{|εlin|2} = E{|Ĝ
H

d−GHd− ν|2}

= E{|(G−∆G)Hd−GHd− ν|2}

= ∆GH∆G + Rν . (5.3.24)

In this formulation, there is no way to differentiate the channel offset term, ∆G from

the noise correlation matrix.
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Using the estimated offset, ∆G′, the linear equalizer coefficients are

ĥlin = [E{εlin′εlin′H}+ ∆G′H∆G′ + Ĝ
H

Ĝ + ∆G′HĜ + Ĝ
H

∆G′]−1ĝ∗0 (5.3.25)

where εlin
′ = εlin − ∆G′Hd′ = ∆G′′Hd′ + ν is the modified observed error with

∆G′′ defined as the part of the offset not estimated using the proposed method,

∆G = ∆G′ + ∆G′′. The term E{εlin′εlin′H} represents an estimate of the effective

noise correlation matrix, introduced in Chapter 3. Evaluating this expectation (across

the data symbols and noise) and combining terms, eq. (5.3.25) becomes

ĥlin = [Rν + ∆G′′H∆G′′ + Ĝ
′H

Ĝ
′
]−1g0, (5.3.26)

where Ĝ
′
= Ĝ + ∆G′ is the original estimated channel plus an estimate of the next

LA+Lc coefficients, i.e. a longer channel estimate. The effective noise due to channel

length estimation errors is reduced since previously un-modeled channel coefficients

are included in the channel model of the above expression. If the system designer

believes there is still significant energy in the true channel not included in channel

model, the above procedure can be repeated, extending the channel model further.

The estimates of ∆G used in this formulation are noisy, so the reduction in the

effective noise will not be as much as shown.

The effective noise correlation matrix is calculated using the difference between

the received data and the received data estimate. Using the proposed method for

increasing the effective length of the channel model does not change this calculation,

so the cross-terms, ∆G′H∆G′′ and ∆G′′H∆G′, are still missing in eq. (5.3.26). The

expected MSE of the equalizer, however, is reduced by extending the channel model

since the excess MSE is proportional to the modeling error.

5.3.2 DFE analysis

The analysis for the DFE closely mirrors that of the LE and will follow a similar line of

reasoning. The change in equalizer coefficients due to channel length estimation errors
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is presented first, followed by MAE analysis, discussion, and methods for channel

compensation.

Changes in equalizer coefficients

A useful method for analyzing the excess error when computing the equalizer co-

efficients is to write the optimal equalizer coefficients as the sum of the estimated

coefficients and an offset,

hff = ĥff + δhff (5.3.27)

hfb = ĥfb + δhfb. (5.3.28)

The DFE feedforward filter derivation is almost identical to the LE derivation, where

G and hlin from the LE derivation are replaced by G0 and hff in the DFE derivation.

The feed-forward estimated filter coefficients have the same form as the LE coefficients

eq. (5.3.9)

ĥff = [GH
0 G0 −GH

0 ∆G0 −∆GH
0 G0 −∆GH

0 ∆G0 + Rν ]−1ĝ∗0. (5.3.29)

Following this logic, the change in the DFE feedforward coefficients is similar to the

change in the LE coefficients from eq. (5.3.15). In the case of the DFE, the change is

written as

δhff = Q′−1[I−W′Q′−1]−1W′Q′−1g∗0, (5.3.30)

where Q′ = [GH
0 G0 +Rν ] and W′ = GH

0 ∆G0 +∆GH
0 G0 +∆GH

0 ∆G0 where we have

split ∆G into the same sections as we split G previously. Including the perturbation

into the feedback section is written as

ĥfb = −Ĝfbĥff

= −(Gfb −∆Gfb)(hff − δhff)

= −Gfbhff + Gfbδhff −∆Gfb(hff − δhff). (5.3.31)
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Subtracting off hfb from both sides, we get the change is

δhfb = ∆Gfb(ĥff)−Gfbδhff . (5.3.32)

Change in MAE

Starting with the estimated error,

êdfe = ĥ
H

ff u + ĥ
H

fbd̂fb, (5.3.33)

the squared error becomes

E{|êdfe|2} = E{|ĥ
H

ff u + ĥ
H

fbd̂fb − d|2}. (5.3.34)

Expanding and substituting into this equation similar to LE analysis, one arrives

at the solution for the MSE,

E{|êdfe|2} =σ2
0,dfe + ĥ

H

ff (∆GH
fb∆Gfb)ĥff + δhHff [GH

0 G0 + Rν ]−1δhff

E{|êdfe|2} =σ2
0,dfe + ĥ

H

ff (∆GH
fb∆Gfb)ĥff+

hff
HW′H [I−W′Q′−1]−HQ′−1[I−W′Q′−1]−1W′hff . (5.3.35)

This expression has an additional term which accounts for the error in estimating

the feedback portion of the channel. Both excess error terms are non-negative again.

The extra error term is the energy from the error in estimating the feedback filter

coefficients.

Discussion

Much of the discussion for the LE still holds true for the DFE. One key difference is the

additional error term in the DFE excess error, ĥ
H

ff (∆GH
fb∆Gfb)ĥff . This term shows

that estimation errors in the feedback portion of the channel show up as squared terms

in the excess error. The excess error from the feedforward section is uncorrelated with

the excess error in the feedback section. So even with perfect feedforward coefficient
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estimation there will still be excess error in the DFE

Another difference between the DFE and the LE is how the structure of ∆G

enters into the error equation. There is no longer a strong diagonal term, so one

would expect regularization methods [75, 58] will not reduce the MSE in the case of

the DFE.

Compensating for estimation error

Estimating the DFE offset term ∆G′ follows a similar derivation to the LE case.

This is because estimating the error introduced by the channel estimate has nothing

to do with the equalizer structure. Therefore the procedure for the DFE is exactly

the same as for the LE, with only the labels changed,

εdfe = Ĝ
H

d̂− u (5.3.36)

E{εdfed
′H} = ∆G′H (5.3.37)

εdfe
′ = εdfe −∆G′Hd′. (5.3.38)

Once the channel estimate is computed, the channel convolution matrix is split

into the feedforward and feedback sections, ∆G′0 and ∆Gfb
′ respectively. Substitut-

ing the channel offset into the equalizer coefficient equations, the feedforward and

feedback portions of the equalizer equations become

ĥ
′
ff = [εdfe

′εdfe
′H + Ĝ

′H
0 Ĝ

′
0]−1g∗0

ĥ
′
ff = Rw + Ĝ

′H
0 Ĝ

′
0]−1g∗0

ĥ
′
fb = −[Ĝfb + ∆G′fb]ĥ

′
ff . (5.3.39)

The feed-forward section is the feedforward coefficients as if a longer channel model

(by La + Lc coefficients) was used originally, with a new effective noise matrix which

includes the channel coefficients which are still not modeled. The estimate of the effec-

tive noise correlation matrix, Rw = Rν+∆G′′H∆G′′′, is the same effective correlation

matrix as for the LE. This estimate will be exact if the term ∆G′′H∆G′+∆G′H∆G′
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is zero (i.e. there is no correlation between channel coefficients not modeled and the

extended model). The estimated feedback coefficients include the channel length ex-

tension. There is additional noise introduced into the estimate (not explicitly modeled

here) due to the errors in estimating ∆G′.

5.4 Performance analysis using simulations

This section provides some simple examples to validate these results. These sim-

ulations were executed in MATLAB and the results are presented in the following

sections. All of the simulations use an EW-RLS algorithm. This method is practical

and approximately equals the MMSE solution for time-invariant channels [36, 86].

Often the noise statistics are often not known, so the implementation of the cor-

rection algorithms involves using an exponential weighting algorithm to estimate the

ensemble correlation matrices. This method is preferred to a running average since

the channel may not be time-invariant, but is assumed to be slowly varying. To il-

lustrate this method, assume quantity to be estimated is E{b}. The observations are

denoted as b̃[n].

E{b[n]} ≈ 1− λ
1− λn+1

n∑
i=0

λn−ib̃[i] (5.4.1)

Only the DFE is shown in simulation since the LE is a special case of the DFE

when the feedback filter has zero coefficients.

5.4.1 Time-invariant channel

For the time-invariant channel the channel coefficients are constant for all time. The

channel time index is dropped in this subsection for brevity, so the ith time-invariant

channel coefficient is represented as g[i] , g[n, i] for all n.

One example to illustrate the induced error term caused by using a lower channel

model order than the true channel order is a true channel with length 3 and a modeled
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channel with length 2. The estimated channel convolution matrix has the form

Ĝ =

g[1] g[0] 0

0 g[1] g[0]

 , (5.4.2)

and the offset matrix has the form

∆G =

g[2] 0 0 0

0 g[2] 0 0

 (5.4.3)

Since there is only one channel coefficient not included in the model, the term

∆GH∆G is equal to

∆GH∆G = |g[2]|2I

The results for a length 7, randomly chosen stationary channel are shown in Fig-

ures 5.4.1 and 5.4.2 (DFE). Figure 5.4.1 is for a 7-coefficient linear equalizer and

figure 5.4.2 is from a DFE with 7 feed-forward coefficients and 6 feedback coefficients.

The transmitted data packets were 60,000 4-QAM symbols long and all results as-

sume perfect symbol estimation (no data estimation errors). The data estimates are

assumed to be perfect to confine the observed error to the channel length estimation

errors.

The results illustrate that the proposed method for correcting the CEB equalizer

works and is approximately equal to the DA approach. Also, while the LE does worse

than the DFE in for all SNR in terms of MSE and BER, the difference between the

regularization approaches and the bias estimated approach is less for the LE than the

DFE as expected by analysis because the previously proposed methods include only

∆GH∆G and not the cross terms.

5.4.2 Rayleigh-fading channel

The second case of interest is a non-stationary channel. Again the channel impulse-

response length is assumed to be underestimated by one coefficient. The analysis is

very similar to the time-invariant channel, except this example illustrates that the
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Figure 5.4.1: (a) BER and (b) MSE comparison of different LE approaches for a
simulated 7-coefficient stationary channel. The approaches include DA, CE error-
estimated (Preisig [75]), CEB bias compensated, CEB regularized (Lee and Cox [58]),
and optimal where perfect channel knowledge is assumed (no channel length estima-
tion error).
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Figure 5.4.2: (a) BER and (b) MSE comparison of different DFE approaches for
a simulated 7-coefficient stationary channel. The approaches include DA, CE error-
estimated (Preisig [75]), CEB bias compensated, CEB regularized (Lee and Cox [58]),
and optimal where perfect channel knowledge is assumed (no channel length estima-
tion error).
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Figure 5.4.3: (a) BER and (b) MSE comparison of different DFE approaches for
a simulated 7-coefficient Rayleigh channel. The approaches include DA, CE error-
estimated (Preisig), CEB bias compensated, CEB regularized (Lee and Cox), and
optimal where perfect channel knowledge is assumed (no channel length estimation
error).

proposed methods are robust when there is channel motion.

The simulation was for a length 4, Rayleigh fading channel, where each coefficient

fades independently. The coherence time (inverse of the Doppler spread) of the chan-

nel was one second, and each coefficient had equal energy (variance). The sampling

rate was 2400 samples per second and the data packet was 60000 4-QAM modulated

symbols.

The results again confirm that the proposed method outperforms other CEB equal-

ization methods, but the DA method outperforms them all. One unexpected result

was that the regularization method proposed by Lee et al. [58] had an increasing MSE

as the SNR increased. This model includes time-variation which leads so there are
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errors both due channel estimation errors and errors due to the channel model having

fewer coefficients than the true channel. The regularization parameter proposed by

Lee et al. does not depend on SNR and so the regularization parameter introduces an

additional modeling error between the MMSE regularization parameter (the inverse

SNR for white noise) and the modeled regularization parameter, which is exacerbated

as the SNR is increased.

.

The DA approach now clearly outperforms all the CEB approaches, but the pro-

posed bias corrected CEB approach performs better than any previously proposed

method. Also, there is now a large gap between the optimal equalizer which has

perfect channel knowledge and the estimated equalizers which estimate the channel

coefficients. This gap did not appear in the time-invariant channel examples and is

likely due to channel estimation errors not related to underestimating the number of

channel coefficients.

5.5 Experimental evidence

5.5.1 RACE08 - experimental setup

The data presented is from the Reschedule Acoustic Communication Experiment

(RACE08) which took place in Narragansett Bay at the University of Rhode Island’s

Narragansett Bay Campus from March 1-March 17, 2008. The data presented was

transmitted using an ITC-1007 spherical transducer with a resonant frequency of

approximately 11 kHz and a bandwidth of approximately 10 KHz. The receiver was

a 12 element vertical array with 12 cm spacing located approximately 1000 m in a

direction of 1200 from the transducer.

The transmitter and receivers used a sampling frequency of fs = 39062.5 samples

per second. There was an anti-aliasing filter at the receivers with a cut-off of about

18.5 KHz.

The water was approximately a constant 10 m depth from transmitter to receiver.
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The data presented were recorded on the last day of the experiment in the 11AM

data cycle. The conditions were fairly calm with some small waves and light wind.

The signals were BPSK modulated, LDPC encoded data packets with 25,000

symbols per packet transmitted at a rate of 6 samples per symbol or approximately

6510 symbols per second. A Hamming window was employed to reduce side-lobe

effects. The carrier frequency was 12 kHz to be near the resonance of the transducer.

Before equalization, the data was low-pass filtered, transfered to baseband, and

down-sampled to two samples per symbol. Time alignment of the signal was achieved

through the use of an M-sequence timing signal at the beginning of the packet.

5.5.2 Experimental results

The channel was modeled as having 8 coefficients (6 causal and 2 a causal coefficients)

clustered around the direct-path arrival. The equalizer was an 8 feed-forward coeffi-

cient (3 causal and 5 acausal), 5 feedback coefficient DFE. This structure was chosen

to capture the width of the main arrival and to cancel out nearby interference.

The three structures studied were the DA, the proposed bias compensating CEB,

and the bias estimating CEB. The regularized model was not examined since the

error-estimating equalizer was always shown to perform better.

Figure 5.5.1 shows the estimated channel using an RLS channel estimator. This

estimated channel is much wider than the CEB equalizers estimate so we can see the

structure of the channel. It appears as if most of the energy arrives with the direct

arrival, although there is an anomalous acausal arrival. There is also some structure

and motion in the causal part of the channel that is probably due to wave motion,

but these arrivals are very weak.

Figure 5.5.2 shows that DA equalizer outperforms both the CEB approaches,

but that the bias compensated CEB equalizer does better than the error-estimating.

This is nice empirical validation that the bias compensating method may be worth

deploying on a real world system if there are other reason to use a CEB equalizer.
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Figure 5.5.1: Channel estimate for the observed data packet. Fairly calm conditions
with little channel spread.

5.6 Discussion

This chapter presented a clear look at the effect of using incorrect estimates of the

channel length on equalization. Inaccurate channel length information will only affect

CEB equalization since the DA equalizer algorithm has no notion of channel state

information. Analysis was presented to illustrate that only under-estimating the

channel length effects the MSE of the output of the equalizer.

Simulation and experimental data confirmed that an under-estimation of the chan-

nel length does negatively effect performance and in this case, the DA algorithm out-

performs the CEB. A method for recovering the missing channel information through

post-processing of the information was proposed and analyzed. Even when including

this additional information, the DA has the lowest MSE due to channel estimation

error.
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Figure 5.5.2: (a) BER and (b) MSE comparison of different DFE equalizer approaches.
The three approaches included are DA, CEB bias compensated, and the CEB error
estimated proposed by Preisig [75]. The approach proposed by Lee et al. [58] is not
included because the previous results showed that it was not an optimal approach,
i.e. the average error increased with SNR.
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Chapter 6

Comparing techniques for

computing equalizer coefficients

6.1 Introduction

Decision feedback equalization has been used for many years to improve bit-rate

and reliability of underwater communication [105]. Coefficients for an equalizer can

be estimated either directly from the received data (Direct Adaptation) or from a

channel estimate (Channel Estimate Based). The CEB-DFE has better performance

(i.e. lower residual estimation error) while the DA-DFE has lower computational

complexity.

The CEB equalizer outperforms the DA equalizer when comparing MSE after

equalization [91, 131]. The question remains, “Why there is a performance differ-

ence between equalizers build using the DA method and those build using the CEB

method?” This chapter examines the reasons for the performance difference between

these two equalizer coefficient methods and compares the methods when used in an

underwater acoustic communication system.

A key conceptual difference between the DA-DFE and CEB-DFE is the coefficients

being tracked, i.e. the coefficients that are adaptively estimated. For the CEB-DFE,

the channel coefficients are estimated from the received data; for the DA-DFE, the

equalizer coefficients are being estimated from the received data.
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The CEB-DFE tracks the physical channel, a parameter that is much easier to

conceptualize. A particular shape of the channel impulse response implies something

about the physical world that can be observed through other means. For instance, if

there is a strong channel path at a certain delay, then there must be some reflector,

such as a boat or a fish, that one could go find. The dynamics of the channel are thus

related to a physical model of the world.

The DA-DFE tracks the equalizer coefficients, a more abstract quantity. The

coefficients satisfy an optimality criterion, but are not parameters that necessarily

relate directly to the physical world. The dynamics of the equalizer coefficients and

thus of the DA-DFE are much more convoluted and are only related to the channel

coefficients through a non-linear function.

Two theories for the performance difference between the DA-DFE and the CEB-

DFE have evolved in the literature:

1. The received data correlation matrix is ill-conditioned and thus the DA algo-

rithm is limited by numerical error. [131]

2. The channel estimate based equalizer requires fewer samples to fully characterize

the channel. [91]

This chapter shows that neither of these two hypothesis are entirely correct. In-

stead, the evidence indicates that the performance difference is related to the coher-

ence time of the equalizer coefficients and the channel impulse response coefficients:

the channel coefficients have a longer coherence time than the equalizer coefficients,

so the CEB method which relies on the channel estimate can be estimated over more

samples than can DA equalizer coefficients. Thus the estimation noise is higher in

the DA method than the CEB method. This result is verified using simulations of

time-varying channels.

In the next section of this chapter, two models of channel coefficient correlation are

described: the Markov model and the Gaussian model. In Section 6.3 the structure

of the channel convolution matrix is briefly described including a description of what

each column and row position signifies. Section 6.4 describes the explicit dependence
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the equalizer coefficients have on the channel coefficients and how changes in chan-

nel coefficients propagate through the equalizer coefficient formulation. Section 6.5

presents a linear perturbation model to simplify the nonlinear relationship between

the equalizer and channel coefficients. Sections 6.6 and 6.7 describe the correlation

of the equalizer coefficients and show the correlation empirically through simulation

results. Section 6.8 is a discussion of the chapter results.

6.2 Channel coefficient correlation models

An assumption that the channel impulse response is slowly varying (compared with

the averaging window) is common when estimating the channel impulse response co-

efficients (or the equalizer coefficients). A reasonable question to ask at this point is

what does the term slowly varying actually mean. This section presents two channel

coefficient correlation models: Markov correlation (also known as auto-recursive cor-

relation) where the correlation falls off exponentially and Gaussian correlation which

has a bell-curve shaped correlation function.

6.2.1 Markov correlation model

In a Markov channel model, also known as an auto-recursive channel model, all statis-

tical information from past channel coefficients is contained in the current coefficient.

This model has been previously shown to be a useful description of the underwater

channel [30]. Under the Markov model, the ith channel coefficient is modeled using

the relation

g[n+ 1, i] = αg[n, i] + νg[n, i], (6.2.1)

where α is a complex scaling parameter (also known as the auto-recursive parameter),

υ[n, i] is zero-mean, Gaussian white noise with variance σ2
υ,i, and g[n, i] is the ith

channel coefficient at time n. The scaling parameter is bounded such that |α| < 1 so

the channel coefficient is bounded, i.e. has finite energy. For simplicity, the remainder

of this section assumes α is real and positive, but the expressions can be modified

161



−200 −150 −100 −50 0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Lag, m

R
g
[m

]

Figure 6.2.1: Correlation function for Markov channel model with α = 0.99 and
συ,i = 0.0199.

to handle a complex α in a straightforward manor. Often the channel is modeled as

slowly varying in time, which implies α ≈ 1.

The correlation function, Rg,i[m], of the ith channel coefficient when using a

Markov model is

Rg,i[m] = E{g[n, i]g∗[n+m, i]} = σ2
υ,i

(
α|m|

1− α2

)
. (6.2.2)

Figure 6.2.1 shows the correlation function with α = 0.99 and συ,i = 0.0199.

The quantity Nwin is defined as twice the number of time-steps before the correla-

tion function is scaled by e−1, i.e. twice the number of time steps m until |Rg,i[m]| =

e−1Rg,i[0]. The scaling parameter, α can be expressed in terms of Nwin through the

relation

α = e−2/Nwin . (6.2.3)

The ith channel coefficient energy or variance equals the correlation function at

zero lag, i.e. σ2
g,i = Rg,i[0], so the process noise variance of the ith channel coefficient

is

σ2
υ,i = σ2

g,i(1− α2). (6.2.4)

With a specified correlation window length and channel coefficient energy, all
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parameters of the channel correlation model are determined. Sometimes the fade-

rate, fr, and sampling frequency, fs, are given rather than the correlation window

length. In this case, the parameters can be determined using the relation

Nwin = fs/(2fr). (6.2.5)

The fade-rate is defined as the width of the power spectral density (PSD) of fading

process. The fade-rate is also referred to as the Doppler spread of the channel. The

reciprocal of the fade-rate is the coherence-time of the channel. In this thesis, the

coherence-time is defined as the lag at which the correlation function is scaled by e−1,

i.e. the lag m at which |Rg,i[m]| = e−1Rg,i[0] (same as [91]).

6.2.2 Gaussian correlation model

The shape of the Gaussian model correlation function is more rounded and less peaked

than the Markov model. The Gaussian correlation model has a correlation function

that is a Gaussian function,

Rg,i[m] = E{g[n, i]g∗[n+m, i]} = σ2
g,ie
− m2

2β2 , (6.2.6)

where

β =
fs

2πfr
. (6.2.7)

The correlation function with σ2
g,i = 1 and β = 100√

2
is shown in Figure 6.2.2. Note

that this function has lower tails than the Markov model.

When simulating a channel with a Gaussian correlation function, zero-mean, unit-

variance, Gaussian white noise is convolved with a Gaussian function, hGF[n]. The

function coefficients are defined as

hGF[n] =

√
σ2
g,i√

2πβ2
e
− n2

2β2 ∀n. (6.2.8)

There are several notable features about the Gaussian correlation function. The
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Figure 6.2.2: Correlation function for Gaussian channel model with σ2
g = 1 and

β = 100√
2
.

first is that the Fourier transform of a Gaussian function is also a Gaussian function,

so the PSD of the channel impulse response coefficients will also have a Gaussian

shape. The lag m at which the correlation function is reduced by a scale factor of

e−1, i.e. |Rg,i[m]| = e−1Rg,i[0], is m =
√

2 · β (see eq. (6.2.6)).

6.3 Structure of the channel convolution matrix

Recall that the received signal is modeled as

u[n] = GH [n]d′[n] + ν[n], (6.3.1)

where u[n] is a vector of received data, d′[n] is a vector of transmitted data, ν[n] is a

noise vector, and G[n] is the channel convolution matrix (described in Section 2.2).

If the channel is time invariant and the received data is sampled once per symbol,

the channel convolution matrix is a constant Toeplitz matrix. If the signal is sampled

more than once per symbol (known as fractionally-spaced sampling), the matrix is

no longer strictly Toeplitz, but still has a Toeplitz-like structure. Symbol-spaced

sampling is assumed for the remainder of the chapter due to notationally simplicity,

but the derived results apply when fractionally-spaced sampling is used.

164



Each position of the channel convolution matrix corresponds to a different time

and delay of the time-varying channel. Recall from Section 2.2 that the (complete)

channel convolution matrix can be separated into a feedback portion, Gfb, and a

remainder portion, G0, referred to as the reduced channel convolution matrix. The

received signal sample vector in eq. (2.2.5) can be rewritten as

u[n] =
[
GH

fb[n] GH
0 [n]

]dfb[n]

d0[n]

+ ν[n]. (6.3.2)

This equation implies that column position corresponds to the (zero-padded) chan-

nel realization and the row position indicates which input data symbol the channel

coefficient is multiplied.

6.4 Models of time-varying equalizer coefficients

Equalizer coefficients are functions of the channel coefficients. Therefore, when the

channel coefficients vary with time, the equalizer coefficients are also time-varying.

The relation between channel coefficients and equalizer is highly non-linear, so how

the equalizer coefficients are affected by a channel coefficient perturbation is not clear.

In this section, three equalizer coefficient models are proposed which explicitly include

channel perturbations.

6.4.1 General channel variation model

To determine the response of the equalizer coefficients to a perturbation in the chan-

nel, a reasonable first step is to apply a perturbation, ∆G to the channel convolution

matrix and analyze the results. The perturbation is the change in the channel con-

volution matrix from one time step to the next,

G[n+ 1] = G[n] + ∆G[n]. (6.4.1)
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Substituting this relation into eq. (2.4.20), the expression for the DFE coefficients

becomes

hff [n+ 1] = (GH
0 [n+ 1]G0[n+ 1] + Rν)−1g∗0[n+ 1]

= (GH
0 [n]G0[n] + Rν + ∆GH [n]G[n] + GH [n]∆G[n] + ∆GH [n]∆G[n])−1

× (g∗0[n] + δg∗[n]) (6.4.2)

hfb[n+ 1] = −Gfb[n+ 1]hff [n+ 1]

= −(Gfb[n] + ∆Gfb[n])hff [n+ 1], (6.4.3)

where δg[n] is the row of ∆G[n] in the same row position as g0 is in G and ∆G is

a matrix made up of the same row positions as Gfb. Using the substitutions

Q[n] = GH
0 [n]G0[n] + Rν

W[n] = ∆GH [n]G[n] + GH [n]∆G[n] + ∆GH [n]∆G[n],

equation (6.4.2) can be rewritten using the matrix inversion lemma [44] as

hff [n+ 1] = (I + Q−1[n]W[n])−1(hff [n] + Q−1[n]δg∗[n]). (6.4.4)

This type of analysis was used in Chapter 5 to examine the effect of channel model

order mismatch where the ∆G included un-modeled channel coefficients. In the

present case ∆G is due to channel motion induced estimation errors.

The form of the feedforward coefficients implies that there is a nonlinear rela-

tionship between the channel perturbation and the equalizer perturbation. In the

low SNR regime when the observation noise is white, the term (I + Q−1[n]W[n]) is

nearly diagonal (diagonally dominant) since the variance of the noise is much larger

than the channel coefficients and the channel coefficient perturbation, so the equalizer

perturbation is approximately linear [35].

This model of perturbation is not properly constrained because any position of the

channel convolution matrix can be perturbed where in normal operation only the first
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column of the channel convolution matrix is perturbed. The next section presents a

model without this inaccuracy.

6.4.2 Channel convolution matrix update model

In the model from the previous section, all elements of the channel convolution matrix

could change from one time step to the next (the entire channel convolution matrix

was perturbed). When updating the equalizer coefficients every symbol, the majority

of matrix elements are just shifted to new positions; only the first column contains

values not previously in the matrix. The update model presented in this section

examines the dynamics of the equalizer coefficients using the this constrained update

of the channel convolution matrix.

The channel is assumed to be varying according to a Markov model,

g[n+ 1] = αg[n] + υ[n], (6.4.5)

where α is the Markov coefficient (same for all elements of channel vector) and υ[n] is

the process noise vector. Statistical correlations Channel coefficients have statistically

correlated variation when the corresponding elements of the process noise vector, of

υ[n], are statistically correlated.

To simplify notation, two new matrices are defined: the “shift” matrix, SM , and

the “choice” matrix, CM , the subscript M is the matrix dimension. The shift matrix,

SM , is an M ×M square matrix which has ones along the diagonal directly above

the main diagonal and zeros everywhere else.

SM =



0 1 0 · · · 0

0 0 1 · · · 0
...

. . .
...

0 0 0 · · · 1

0 0 0 · · · 0


M×M

(6.4.6)

Multiplying by this matrix shifts the existing data to new positions from one time
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step to the next.

The choice matrix serves two functions: first, it selects the leftmost column from

the channel convolution matrix and, second, it scales that column by the Markov

coefficient, α. CM is a square M ×M matrix that has α as the bottom left element.

All remaining elements are all zero.

CM =



αg 0 0 · · · 0

0 0 0 · · · 0
...

. . .
...

0 0 0 · · · 0

0 0 0 · · · 0


M×M

(6.4.7)

If N is the total number of channel coefficients and Lff is the number of feedforward

equalizer coefficients per feedforward section, then the channel convolution matrix has

dimension (Lff +N−1)×Lff . The update equation for the channel convolution matrix

is

G[n+ 1] = SHLff+N−1G[n]SLff
+ G[n]CLff

+ Υ[n] (6.4.8)

The matrix Υ[n] has dimensions (Lff + N − 1) × Lff and contains the zero-padded

realization of the process noise at time n in the first column and all other elements

are zero. The noise realizations from previous time-steps are already included in the

convolution matrix, G[n], so past noise realizations are not included in Υ[n].

Including the variation model into the DFE formulation from eq. (2.4.20) gives

hff [n+ 1] = (GH
0 [n+ 1]G0[n+ 1] + Rν)−1g∗0[n+ 1]

= ((SHLG0[n]SL + G0[n]CLff
+ Υ0[n])H(SHLG0[n]SL + G0[n]CLff

+ Υ0[n]))−1

× ((SHLG0[n]SL + G0[n]CLff
+ Υ0[n])s)

=

(αg[n] + υ[n])H(αg[n] + υ[n]) (αg[n] + υ[n])HG′0[n+ 1]

G′H0 [n+ 1](αg[n] + υ[n]) G′′H0 [n]G′′0[n]

+ Rν

−1

× ((SHLG0[n]SL + G0[n]CLff
+ Υ0[n])s) (6.4.9)
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hfb[n+ 1] = −Gfb[n+ 1]hff [n+ 1]

= −(SHLfb
Gfb[n]SLff

+ Gfb[n]CLff
+ Υfb[n])hff [n+ 1]. (6.4.10)

In the above expressions, s is the selection vector described in Section 2.4, υ[n] is

the first column of the Υ[n] matrix corresponding to the process noise vector. The

subscripts 0 and fb indicate the matrix partition described in eq. (2.4.18).

The prime notation is used to indicate channel convolution matrices that have

been shifted in a particular way: a single prime (i.e. G′) indicates that all entries in

the channel convolution matrix have been shifted to the right (the last column was

removed and a column of zeros was appended to the left). A double prime (i.e. G′′)

indicates that all of the entries have been shifted right and down, shifting in zeros

from the left and top.

This model describes how changes in the channel impulse response propagate

through the channel convolution matrix product. The change first manifests itself in

the top and left of the channel convolution matrix product. During the next L − 1

time steps (for a total of L steps) the change would move up the channel convolution

matrix one row at a time and move through the channel convolution product matrix

(G[n]GH [n]) from the right and bottom and work toward the top and left.

The trace of the matrix is equal to the sum of the eigenvalues of the matrix.

The matrix Q[n] is defined as Q[n] = GH
0 [n]G0[n] + Rν . The Lff − 1 × Lff − 1

principle submatrix of Q[n] is denoted as QP [n]. The bottom right element of Q[n]

is represented by the symbol qLffLff
[n] and the term δg[n] is defined as δg[n] = (α −

1)g[n] + υ[n].

The Poincare separation theorem states that if the eigenvalues of Q[n] (denoted

λQ,i, i = 1, · · · , Lff) and QP [n] (denoted λ̃Q,i, i = 1, · · · , Lff) are ordered from

greatest to least, then the following relationship between the eigenvalues is satisfied,

[38]

λQ,1 ≥ λ̃Q,1 ≥ λQ,2 ≥ · · · ≥ λ̃Q,Lff−1 ≥ λQ,Lff
. (6.4.11)

This relationship bounds the changes in each of the eigenvalues from one step to the
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next (with the least eigenvalue lower bounded by zero). In addition, at each time

step the trace of Q[n] changes by ∆Q = |δg[n]|2 −
[
Q[n]

]
(LffLff)

, so the change in

the greatest eigenvalue is also bounded and so the change in energy of the channel

convolution matrix product is bounded. Although this argument shows that the

changes in the spectrum of the matrix Q[n] is bounded, empirically, the changes are

not only bounded but smooth. Therefore, the change in equalizer coefficients should

also be smooth.

When the observation noise is white with variance σ2
ν , the diagonal matrix Rν = σ2

νI

acts as a regularization term. This limits the maximum eigenvalues of Q−1[n] to σ−1
ν ,

which limits the maximum change in the energy of the equalizer coefficients. In this

case, when the SNR is low, the diagonal noise correlation matrix dominates in Q[n],

so Q[n] becomes nearly diagonal (diagonally dominant). This implies that the per-

turbation of the equalizer coefficients is approximately linear with similar dynamics

to the channel coefficients. This result will also be seen when analyzing the equalizer

coefficients using a linear perturbation model.

The structure of the updates to Q[n], where the matrix indicates that at each

step, the matrix update is rank two. Thus a low-complexity method for updating the

CEB-DFE could be constructed where the inverse matrix is updated using a rank

two update. This idea is not explored further in this thesis, but merits future study.

The model presented in this section shows the exact dependence of the equalizer

coefficients on the change in the channel coefficients; few parts of the equalizer matrix

equation are changing from one time-step to the next. In the next subsection, the

variation of this complete model is simplified into a block variation model.

6.4.3 Block variation model

The channel convolution matrix update model introduced in the last section is accu-

rate but cumbersome. To ease use of an equalizer coefficient variation model, a block

variation model is introduced where the channel convolution matrix is only updated

every Lff time steps, where Lff is the number of DFE feedforward coefficients. The

update will change the whole matrix instantaneously so the changes do not propa-
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gate through as in the previous model, which simplifies the analysis of the equalizer

coefficient dynamics.

To model block changes, eq. (6.2.1) is applied to the whole channel convolution

matrix rather than only a channel vector.

G[n+ 1] = αG[n] + Υ[n] (6.4.12)

where Υ[n] is now a fully populated channel noise matrix appropriately zero-padded

to account for shifting effects. Substituting this model into eq. (2.4.20), the channel

equalizer coefficients can be written as

hff [n+ 1] = (GH
0 [n+ 1]G0[n+ 1] + Rν)−1g∗0[n+ 1]

= ((αG0[n] + Υ0[n])H(αG0[n] + Υ0[n]))−1(αg0 + υ0[n])∗

= (|α|2GH
0 [n]G0[n] + αΥH

0 [n]G0[n] + α∗GH
0 [n]Υ0[n] + ΥH

0 [n]Υ0[n])−1×

(αg0 + υ0[n])∗ (6.4.13)

hfb[n+ 1] = −Gfb[n+ 1]hff [n+ 1]

= −(αGfb[n] + Υfb[n])hff [n+ 1]. (6.4.14)

This model highlights the effect a channel perturbation has on the equalizer co-

efficients. This model behaves as if the channel perturbed at some time, followed

by L time steps where the channel maintains the perturbed value. The equalizer

coefficients all change simultaneously from one steady state value to the next. In this

case, the matrix Υ[n] is full column rank so there are not the same eigenvalue bounds

shown for the previous model.

This model also highlights the nonlinear relation between the equalizer coeffi-

cients and the channel coefficients. Even when the channel coefficients have simple

dynamics, such as the Markov model, the change in equalizer coefficients to a channel

perturbation is unclear. This idea of a block changing channel is used again when

studying the correlation structure of the equalizer coefficients.

With the exception of the block variational model, which is used as a tool for
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describing the channel when evaluating equalizer coefficient correlation, the three

models presented in this section will not be used again in this thesis. They are in-

cluded in this chapter to complete the discussion and allow one to visualize the precise

relationship between the channel and equalizer coefficients. The channel convolution

matrix update model is especially illustrative of the one-step update of the equal-

izer coefficients and highlights the nonlinear relationship between the channel and

equalizer coefficients.

6.5 First-order Taylor expansion of equalizer coef-

ficients

Another method for determining the change in equalizer coefficients due to a change

in the channel coefficients is the Taylor expansion of the equalizer coefficients. This

provides a linearized model of the equalizer coefficient dynamics and a way to compare

the channel coefficient dynamics and the equalizer coefficient dynamics.

The derivation of the first-order Taylor expansion is presented in two steps: first,

the derivation is given for a scalar channel (i.e. a channel with one coefficient). Second,

the derivation is presented for a Taylor expansion of and equalizer with more than one

ceofficient (a vector equalizer). The channel length and equalizer length are assumed

to be equal throughout these derivations. The time index is dropped for clarity.

6.5.1 Scalar equalizer coefficient based on scalar channel per-

turbation

To gain intuition into the dependence of the feedforward equalizer coefficients on

the dynamics of the channel coefficients, the scalar channel and scalar equalizer are

analyzed. For the scalar channel, the first order Taylor expansion answers the question

of “What is the (approximate) magnitude of the equalizer coefficient perturbation,

δh = h(g+δg, g∗+δg∗)−h(g, g∗), caused by a channel impulse response perturbation

δg?” The scalar channel provides a clear view of the interplay between the dynamics
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of the channel and the dynamics of the equalizer.

For a scalar channel, the equalizer coefficient that minimize the MMSE cost func-

tion is

h(g, g∗) =
g∗

g∗g + σ2
ν

. (6.5.1)

The Taylor expansion of the equalizer coefficient about the channel coefficient is

h(g + δg, g∗ + δg∗) ≈ h(g, g∗) +
∂h

∂g
δg +

∂h

∂g∗
δg∗. (6.5.2)

After evaluating the partial derivatives and rearranging terms, the Taylor expan-

sion becomes

h(g + δg, g∗ + δg∗) =
(g + δg)∗

gg∗ + σ2
ν

−
(
g∗δg + gδg∗

gg∗ + σ2
ν

)
h(g, g∗). (6.5.3)

The expression for the linear perturbation model of the equalizer coefficient is

h(g + δg, g∗ + δg∗) = h(g, g∗) + δh. (6.5.4)

From eq. (6.5.3), the equalizer coefficient perturbation term is

δh =
δg∗

gg∗ + σ2
ν

−
(
g∗δg + gδg∗

gg∗ + σ2
ν

)
h(g, g∗). (6.5.5)

Derivation of first-order Taylor expansion for scalar equalizer

Throughout this chapter, a variable and its conjugate are treated as two separate

complex variables, as done in [9]; the partial derivative with respect to a variable

treats the conjugate of the variable as a constant.

The partial derivatives of h with respect to g and with respect to g∗ is

∂h

∂g
= − (g∗)2

(gg∗ + σ2
ν)

2

∂h

∂g∗
= − gg∗

(gg∗ + σ2
ν)

2
+

1

gg∗ + σ2
ν

.
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The linear perturbation model of the equalizer coefficient around the point g is

h(g + δg, g∗ + δg∗) ≈ h(g, g∗) +
∂h

∂g
δg +

∂h

∂g∗
δg∗

= h(g, g∗)− (g∗)2

(gg∗ + σ2
ν)

2
δg − gg∗

(gg∗ + σ2
ν)

2
δg∗ +

1

gg∗ + σ2
ν

δg∗

=
(g + δg)∗

gg∗ + σ2
ν

−
(
g∗δg + gδg∗

gg∗ + σ2
ν

)
h(g, g∗).

The last equality comes from substituting eq. (6.5.1) for both expansion and simplifi-

cation of terms. Using the first-order Taylor expansion, the equalizer coefficients can

be written as

h(g + δg, g∗ + δg∗) = h(g, g∗) + δh

≈ h(g, g∗) +
δg∗

gg∗ + σ2
ν

−
(
g∗δg + gδg∗

gg∗ + σ2
ν

)
h(g, g∗),

which implies

δh =
δg∗

gg∗ + σ2
ν

−
(
g∗δg + gδg∗

gg∗ + σ2
ν

)
h(g, g∗).

Interpretation of results for scalar equalizer

There are two interesting quantities that can be extracted from the first order Taylor

expansion of the equalizer coefficients. The first is the normalized change in the equal-

izer coefficients verses the channel coefficients. The second quantity is the behavior

of the linear model in the extreme SNR regions.

Using eqns. (6.5.1) and (6.5.5), the normalized change in the equalizer coefficient,

δh
h

, can be written in terms of the normalized change of the channel coefficient, δg
g

as

δh

h
=

δg∗

gg∗+σ2
ν
−
(
g∗δg+gδg∗

gg∗+σ2
ν

)
h(g, g∗)

g∗

gg∗+σ2
ν

=
δg∗

g∗
−

δg
g

+ δg∗

g∗

1 + σ2
ν

gg∗

=
δg∗

g∗

(
σ2
ν

|g|2 + σ2
ν

)
− δg

g

(
|g|2

|g|2 + σ2
ν

)
. (6.5.6)

174



Thus, the normalized change in the equalizer coefficient is a combination of the

normalized change of the channel coefficient and its conjugate. This implies that∣∣ δh
h

∣∣ ≤ ∣∣∣ δgg ∣∣∣, i.e. the absolute normalized change of the equalizer coefficient is less

than or equal to the absolute normalized change in the channel coefficient, and so the

equalizer coefficient should change slower than the channel coefficient in this model.

Empirically, this turns out not to be the case, which implies that the linearized pertur-

bation model does not accurately capture the dynamics of the equalizer coefficients.

Analysis of δh is still illuminating in the at extreme ranges of SNR.

At low SNR where |g|2 � σ2
ν , eq. (6.5.5) is approximated as

δh ≈ δg∗

σ2
ν

. (6.5.7)

The term (
g∗δg + gδg∗

gg∗ + σ2
ν

)
h(g, g∗) =

(
(g∗δg + gδg∗)g∗

(gg∗ + σ2
ν)

2

)
≈ 0

because the term σ4
ν appears in the denominator and is much greater than the channel

coefficients at low SNR.

At high SNR where |g|2 � σ2
ν , eq. (6.5.5) is approximated instead as

δh ≈ δg

g
h(g, g∗). (6.5.8)

The change in the equalizer coefficient in the high SNR region still depends on the

current equalizer coefficient value.

One result of these derivations is that at low SNR, the dynamics of equalizer

coefficient and the channel coefficient are very similar. At high SNR the dynamics of

the equalizer and channel coefficients are very different. In later section it is shown

that the coherence time of the equalizer coefficients in the high SNR region decreases

as with the channel coefficient correlation.
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6.5.2 Vector equalizer coefficients based on vector channel

A more realistic scenario than the scalar case is the multi-coefficient channel and a

multi-coefficient equalizer. When the channel has more than one coefficient, however,

the mathematics is more involved. This section presents the first-order Taylor ex-

pansion of the multi-coefficient equalizer which provides a method for comparing the

dynamics of the equalizer and channel coefficient dynamics.

Only the DFE feedforward coefficient dynamics are analyzed. This is done because

the feedback coefficient dynamics are similar to the channel coefficient dynamics. The

subscript ff is dropped from all of the equalizer coefficient labels because only one part

of the equalizer is being analyzed. For simplification, the channel is assumed to change

in block increments so the channel convolution matrix is Toeplitz.

The first order Taylor expansion of the DFE feedforward (or LE) coefficients is

h(g + δg,g∗ + δg∗) ≈ h(g,g∗) +
∂h

∂g
δg +

∂h

∂g∗
δg∗, (6.5.9)

where ∂h
∂g

is the Jacobian of h with respect to g. The column vector δg[n] is a channel

coefficient perturbation. The elements of δg[n] (at time n) are

δg[n] =
[
δg[n, 0] δg[n, 1] · · · δg[n,N − 1]

]T
. (6.5.10)

Substituting for the Jacobian matrices in eq. (6.5.9), the first-order perturbation

model of the equalizer coefficients is

h(g + δg,g∗ + δg∗) ≈ h(g0,g
∗
0) + Q−1δg∗ −Q−1

[
δGH

0 G0 + GH
0 δG0

]
h(g0,g

∗
0).

(6.5.11)
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The matrix δG0 is an upper triangular matrix,

δG0[n] =



δg[n, 0] δg[n, 1] δg[n, 2] · · · δg[n,N − 1]

0 δg[n, 0] δg[n, 1] · · · δg[n,N − 2]

0 0 δg[n, 0] · · · δg[n,N − 3]
...

. . .
...

0 0 0 · · · δg[n, 0]


, (6.5.12)

where δg[n, i] is the ith element for the δg[n] vector at time n. The channel is modeled

as block changing, so all elements have the same time-index n. The matrix δG0 has

a similar structure to the reduced channel convolution matrix

G0[n] =



g[n, 0] g[n, 1] g[n, 2] · · · g[n,N − 1]

0 g[n, 0] g[n, 1] · · · g[n,N − 2]

0 0 g[n, 0] · · · g[n,N − 3]
...

. . .
...

0 0 0 · · · g[n, 0]


. (6.5.13)

In this matrix, g[n, i] is the ith coefficient of the channel impulse response vector g[n].

The channel is assumed to be block changing so all channel coefficients again have the

same time index. For the remainder of this section, the time-index n is suppressed

for brevity so g[i] , g[n, i].

Derivation of first-order Taylor expansion of vector equalizer

Recall from above that the first-order Taylor expansion of the equalizer coefficients

with respect to the channel coefficients is

h(g + δg,g∗ + δg∗) ≈ h(g,g∗) +
∂h

∂g
δg +

∂h

∂g∗
δg∗

When there are N channel coefficients, the Jacobian of the equalizer coefficients
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with respect to the channel coefficients are defined as

J(h,g) =
∂h

∂g
=
[
∂h
∂g[0]

∂h
∂g[1]

· · · ∂h
∂g[N−1]

]
. (6.5.14)

Similarly, the Jacobian of the channel coefficients with respect to the conjugate of the

channel coefficients is

J(h,g∗) =
∂h

∂g∗
=
[

∂h
∂g∗[0]

∂h
∂g∗[1]

· · · ∂h
∂g∗[N−1]

]
. (6.5.15)

In this derivation, a complex variables and their conjugates are assumed to be

two different variables as proposed in [9]. Also, the following matrix identity is used

throughout the derivation (see e.g. [54]),

dA−1(t)

dt
= −A−1(t)

dA−1(t)

dt
A−1(t) (6.5.16)

In this identity, A(t) is an invertible matrix whose elements are functions of a pa-

rameter t.

Recall from eq. (2.4.20) that the DFE feedforward coefficients are

h = [GH
0 G0 + Rν ]−1GH

0 e0 = Q−1g∗0 (6.5.17)

where ei is a column vector with a ’1’ in the (i+ 1)th position and all other elements

zero, e.g.

e2 =
[
0 0 1 0 · · · 0

]T
(6.5.18)

The column vector g∗0 is the complete channel impulse response vector and the

conjugate transpose of the first row of the reduced channel convolution matrix, G0.

g∗0 =
[
g∗[0] g∗[1] · · · g∗[N − 1]

]T
(6.5.19)

Defining the matrix Q as

Q = GH
0 G0 + Rν , (6.5.20)
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the partial derivative of the equalizer coefficients is

∂h

∂g[i]
=

∂

∂g[i]
Q−1g∗0

= −Q−1 ∂Q

∂g[i]
Q−1g∗0

= −Q−1GH
0 SiNh(g,g∗). (6.5.21)

The second equality comes from substituting eq. (6.5.16) into the first equality. The

matrix SN is the shift matrix defined in eq. (6.4.6) and the matrix S0
N is assumed to

be the identity matrix. The last equality comes from evaluating the partial derivative

with respect to the channel coefficient g[i]. The noise correlation matrix Rν has no

dependence on g[i] so its derivative evaluates to zero. The reduced channel convolu-

tion matrix is Toeplitz so the Jacobian is also Toeplitz. To obtain the last equality,

the relation h(g,g∗) = Q−1g∗0 from eq. (6.5.17) is substituted into the second equality.

The partial derivative of the equalizer coefficients is

∂h

∂g∗[i]
=

∂

∂g∗[i]
Q−1g∗0

= −Q−1 ∂Q

∂g∗[i]
Q−1g∗0 + Q−1 ∂g∗0

∂g∗[i]

= −Q−1
(
SiN
)H

G0h(g,g∗) + Q−1ei. (6.5.22)

The additional term Q−1ei is the ith column of the inverse of the matrix Q. The

complete Jacobian matrices can be constructed from the component results

J(h,g) =
[
−Q−1GH

0 S0
Nh(g,g∗) · · · −Q−1GH

0 SN−1
N h(g,g∗)

]
(6.5.23)

J(h,g∗) =
[
−Q−1(S0

N)HG0h(g,g∗) · · · −Q−1(SN−1
N )HG0h(g,g∗)

]
+ Q−1

(6.5.24)

The quantities of interest in eq. (6.5.9) are the Jacobian matrices times the chan-

nel coefficient perturbation vectors, i.e. J(h,g)δg and J(h,g∗)δg∗. The product
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J(h,g)δg is

J(h,g)δg = −
N−1∑
i=1

δg[i]Q−1GH
0 SiNh(g,g∗)

= −Q−1GH
0

(
N−1∑
i=1

δg[i]SiN

)
h(g,g∗)

= −Q−1GH
0 δG0h(g,g∗), (6.5.25)

where the matrix δG0 is defined in eq. (6.5.12). Similarly, the product J(h,g)δg is

J(h,g)δg = −Q−1δGH
0 G0h(g,g∗) + Q−1δg∗0 (6.5.26)

Substituting the relations from eqns. (6.5.25) and (6.5.26) into eq. (6.5.9), the

first-order Taylor expansion of the equalizer coefficients is

h(g + δg,g∗ + δg∗) ≈ h(g0,g
∗
0) + Q−1δg∗ −Q−1

[
δGH

0 G0 + GH
0 δG0

]
h(g,g∗)

The equalizer coefficients from a channel perturbation can be written as

h(g + δg,g∗ + δg∗) = h(g,g∗) + δh

From the first order Taylor expansion, the perturbation term is

δh ≈ Q−1δg∗ −Q−1
[
δGH

0 G0 + GH
0 δG0

]
h(g,g∗) (6.5.27)

Notice that the relation for the vector equalizer reduces to the relation for the scalar

equalizer from eq. (6.5.5) when the number of equalizer and channel coefficients is

reduced to one.

Interpretation of results for vector equalizer

The form of the equalizer perturbation, δh, at high and low SNR reveals the equalizer

dynamics in these regions. The eigenvalues of the matrix GH
0 G0 are denoted λg,i and
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the eigenvalues of the matrix Rν are denoted λr,i for i = 1, · · · , N . The eigenvalues

are ordered from greatest to least, i.e. λg,1 is the greatest eigenvalue of the matrix

GH
0 G0.

At low SNR, λr,N−1 � λg,1 so GH
0 G0 +Rν ≈ Rν . Treating GH

0 G0 as a Hermitian

perturbation matrix, the maximum perturbation of the eigenvalues of Rν is λg,1.

Since this perturbation is small, the eigen-structure of Rν will not change noticeably

when perturbed by GH
0 G0 [99].

Using this assumption, eq. (6.5.27) becomes

δh = Rν
−1δg∗0 + Rν

−1
[
δGH

0 G0 + GH
0 δG0

]
Rν
−1g∗0

≈ Rν
−1δg∗0 (6.5.28)

The term

Rν
−1
[
δGH

0 G0 + GH
0 δG0

]
Rν
−1g∗0

is approximately zero since the inverse noise correlation term dominates. The equal-

izer coefficients have the form of a whitened match filter.

When the SNR is low eq. (6.5.28) can be used to approximate the perturbed

equalizer coefficients as

h(g + δg,g∗ + δg∗) ≈ Rν
−1(g + δg)∗. (6.5.29)

At low SNR the dynamics of the equalizer coefficients and the channel coefficients are

equivalent. A perturbation of the channel coefficients causes a proportional change

in the equalizer coefficients.

Rearranging the relation for the equalizer coefficient perturbation, δh so the terms

based on δg are separated from those based on δg∗ simplifies the analysis at high SNR.

A relationship between the channel coefficients and the channel convolution function

that simplifies the derivation is

δg∗ = δGH
0 e0 (6.5.30)
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Substituting this relation into the equalizer coefficient perturbation from eq. (6.5.27)

gives an expression for the equalizer perturbation,

δh = Q−1δGH (e0 −G0h(g,g∗))−Q−1GH
0 δG0h(g,g∗). (6.5.31)

At high SNR, the reduced channel convolution matrix product dominates the

noise correlation matrix, i.e. λg,N−1 � λr,1, so Q ≈ GH
0 G0. Substituting this approx-

imation and definition of the equalizer coefficients from eq. (2.4.20) into eq. (6.5.31)

gives

δh ≈ (GH
0 G0)−1δGH

0

(
I−G0(GH

0 G0)−1GH
0

)
e0 − (GH

0 G0)−1GH
0 δG0h(g,g∗)

The term
(
I−G0(GH

0 G0)−1GH
0

)
is a projection matrix onto the null space of G0

[112]. Assuming g0 6= 0 the matrix G0 is full rank, so the null space is empty. The

perturbation term becomes

δh ≈ −(GH
0 G0)−1GH

0 δG0h(g,g∗) (6.5.32)

Therefore, at high SNR the equalizer coefficient perturbation depends on the unper-

turbed values of the equalizer coefficients.

6.6 Correlation structure of equalizer coefficients

A final way to evaluate the equalizer dynamics is by determining the equalizer coef-

ficient correlation structure based on the correlation structure of the channel coeffi-

cients. In this section, the extreme SNR regions are analyzed.

At low SNR, the equalizer coefficient correlation is equivalent to the channel co-

efficient correlation, a result previewed in the last section. When the channel and

equalizer coefficients have the same dynamics, the CEB and DA methods have simi-

lar error performance, which is supported by experimental data [91].

At high SNR, equalizers with more than one coefficient are well approximated
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by a scalar equalizers; the analysis of a single coefficient equalizer produces results

applicable to the multiple channel equalizer.

The estimated equalizer coefficient correlation functions are presented in the next

section. These functions indicate that the coherence time of the equalizer coefficients

is less than the channel coefficients. There is therefore a shorter data averaging

window for the equalizer coefficients than the channel coefficients. The equalizer

coefficients calculated using the DA method will have higher error than CEB equalizer

coefficients. Simulation data supports this hypothesis of the relative performance

between the two algorithms [91].

Recall from eq. (2.2.5) that DFE feedforward coefficients are

hff [n] = Q[n]−1g∗0[n] = (GH
0 [n]G0[n] + σ−2

d Rν)−1g∗0[n], (6.6.1)

where the transmitted symbol energy, σ2
d, is explicitly reintroduced.

In this section, the channel is assumed to be Rayleigh Fading with the variance

of each channel coefficients equal to σ2
g . If the channel coefficients are independently

varying and the noise is white with variance σ2
ν , the average SNR of the communica-

tions channel is
Nσ2

dσ
2
g

σ2
ν

, where N is the number of channel coefficients.

Recall that the ith eigenvalue of GH
0 G0 is denoted by λg,i for i = 1, · · · , N , and

that the eigenvalues are ordered from greatest to least, i.e.

λg,1 ≥ λg,2 ≥ · · · ≥ λg,N

Similarly, the eigenvalues of the noise correlation matrix are

λr,1 ≥ λr,2 ≥ · · · ≥ λr,N
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6.6.1 Correlation of equalizer coefficients at low SNR

At low SNR, the noise energy (scaled by the transmit symbol energy) dominates over

the channel energy and so λr,N � λg,1. The matrix Q[n] can be approximated as

Q[n] = GH
0 [n]G0[n]σ−2

d Rν ≈ σ−2
d Rν .

The time dependence of Q[n] is removed because the noise statistics are stationary.

The DFE feedforward equalizer coefficients at low SNR are

hff [n] ≈ Rν
−1σ2

dg
∗
0[n] (6.6.2)

Note that the equalizer coefficients in eq. (6.6.2) are the whitened match filter of the

channel coefficients.

The correlation matrix of the channel coefficients at lag m is defined as

Rg[m] = E{g[n]gH [n+m]}. (6.6.3)

Similarly, the equalizer coefficient correlation matrix is

Rh[m] = E{h[n]hH [n+m]} (6.6.4)

Substituting the expression from eq. (6.6.2) into eq. (6.6.4), the equalizer correlation

becomes

Rh[m] ≈ Rν
−1R∗g[m]Rν

−1 (6.6.5)

When the noise is white, Rν = σ2
νI, the equalizer coefficient correlation matrix at

lag m is

Rh[m] ≈ σ−4
ν R∗g[m] (6.6.6)

This relation shows that the equalizer coefficient correlation is a scaled version of the

channel coefficient correlation. By normalizing the correlation matrices so that the

maximum value is one the channel and equalizer coefficient correlation matrices are
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equal.

Since the channel and equalizer coefficients have the same correlation, the aver-

aging window lengths used for both sets of coefficients are equal. The DA and CEB

methods of calculating the equalizer coefficients therefore have the same error perfor-

mance at low SNR. This has been confirmed in the literature [91] and is shown with

simulation data later in this chapter.

6.6.2 Correlation of equalizer coefficients at high SNR

At high SNR (λg,N � λr,1), the received data correlation matrix, Q[n], has the

approximation

Q[n] ≈ G0[n]GH
0 [n]. (6.6.7)

because the reduced channel convolution matrix product, G0G
H
0 , dominates the noise

correlation matrix. The dominant term of Q[n] is the reduced channel convolution

matrix product, so Q[n] is time-dependent.

When the SNR is high, the equalizer coefficient correlation matrix is

Rh[m] = E[h[n]hH [n+m]] ≈ E
[(

GH
0 [n]G0[n]

)−1
g∗0[n]gT0 [m]

(
GH

0 [m]G0[m]
)−1
]
.

(6.6.8)

The expectation is over the channel impulse response coefficients. Since the channel

impulse response coefficients appear in both the numerator and denominator the

expectation is hard to evaluate. The equalizer correlation matrix is also no longer

a linear function of the channel correlation matrix, so one would not expect the

normalized correlation of the equalizer and channel coefficients to be equivalent.

Scalar approximation of vector equalizer

At high SNR, the terms in eq. (6.6.1) can be written as

(GH
0 [n]G0[n])hff [n] = g∗0[n]. (6.6.9)
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The conjugate of the channel coefficients are the vector product of the reduced convo-

lution matrix product and the feedforward equalizer coefficients. When the channel is

block changing, the reduced channel convolution matrix when the feedback equalizer

spans the complete delay-spread is given in eq. (6.5.13).

Using the column vector e0, where the first element is a one and the rest are zero,

the first column of the reduced channel convolution matrix is

GH
0 [n]G0[n]e0 =



g[n, 0]g∗[n, 0]

g[n, 0]g∗[n, 1]

g[n, 0]g∗[n, 2]
...

g[n, 0]g∗[n,N − 1]


. (6.6.10)

This relation implies a surprising result,

GH
0 [n]G0[n]e0 = g[n, 0]g∗[n].

The MMSE equalizer coefficients at high SNR are

h[n] =
[
1/g[n, 0] 0 0 . . . 0

]T
. (6.6.11)

Upon reflection, this result is not too surprising because the MMSE feedback

section removes all ISI, so inverting the first channel coefficient is the optimal equalizer

with no noise. Regardless of channel length, only one feedforward coefficient is needed

at very high SNR. This is not meant to be a way to reduce order (although it does

merit further study), but is meant to provide a tractable way to analyze the vector

equalizer using a scalar approximation. The next part provides an analysis of the

scalar equalizer correlation.

In practical equalizer implementations, a single equalizer coefficient would proba-

bly not be desirable since the ISI cancellation is not perfect due to estimation error.

In this case, the feedforward section is used to reduce and reshape the residual error.
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Expectation of single coefficient equalizer

The last section argued that at high SNR regime with a block-changing channel the

DFE feedforward section has only one energetic coefficient. As a result, the analysis of

the single coefficient equalizer is sufficient to characterize the full feedforward section.

In this section, a statistical analysis is given for the single coefficient equalizer showing

that the equalizer coefficient has finite variance and thus a correlation function exists.

In the next section, empirical results are presented which verify the proposition that

the equalizer coefficients have a shorter correlation time than do channel coefficients.

Recall from eq. (6.5.1) that the single coefficient equalizer is

h =
g∗

g∗g + σ2
ν

. (6.6.12)

The channel coefficients are assumed to be Rayleigh fading, i.e. modeled as circularly-

symmetric, complex Gaussian random variables. One property of circularly-symmetric

random variables is that the magnitude and phase are independent. The magnitude

is Rayleigh distributed and the phase uniformly is distributed from 0 to 2π [70].

The zero mean property of the equalizer coefficient is derived first. In eq. (6.6.12),

the complex channel coefficient can be rewritten in magnitude-phase form, i.e.

g = |g|ejθg ,

to give an alternative relation for the equalizer coefficient

h =
|g|e−jθg

|g|2 + σ2
ν

. (6.6.13)

Since θ and |g| are independent, the expectation of the channel coefficient is

E{h} = E{|g|e
−jθg

|g|2+σ2
ν

}

= E{e−jθg}E{ |g||g|2+σ2
ν

}

= 0, (6.6.14)
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since

E{e−jθg} =
1

2π

∫ 2π

0

e−jθdθ = 0.

The finite variance property of the channel coefficient is calculated next. Since

the equalizer coefficient is zero-mean, the variance is E{|h|2}. Substituting the ex-

pression for the equalizer coefficient from eq. (6.6.12) and evaluating the expectation

(a complete proof is below), the equalizer coefficient variance is

E{|h|2} =
1

2σ2
g

[
−1 + (1 + ρ)eρ

∫ ∞
ρ

e−z

z
dz

]
. (6.6.15)

In this expression, ρ = σ2
ν/σ

2
g is a modified version of the inverse signal to noise ratio,

σ2
g is the variance of the channel coefficient, and σ2

ν is the observation noise variance.

The integral term,

E1(ρ) =

∫ ∞
ρ

e−z

z
dz

is a special integral known as the exponential integral function, with well known

bounds [1],
1

2
ln

(
1 +

2

ρ

)
< eρE1(ρ) < ln

(
1 +

1

ρ

)
. (6.6.16)

The lower bound of the variance is interesting for small values of ρ. As ρ → 0 (i.e.

σ2
ν → 0), the variance of the equalizer coefficients monotonically increases and is

bounded away from zero. This implies that as the SNR is increased, the variance of

the equalizer coefficients also increases.

The upper bound implies that

(1 + ρ) ln

(
1 +

1

ρ

)
<∞, ρ > 0, (6.6.17)

and so the variance of the equalizer coefficient is finite,

E{|h|2} =
1

2σ2
g

[−1 + (1 + ρ)eρE1(ρ)] <∞, ρ, σ2
g > 0. (6.6.18)

Since the variance is bounded, the correlation function of the equalizer exists. The
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correlation function of the channel coefficients are examined empirically in the next

section.

Derivation of equalizer coefficient variance The variance of the equalizer co-

efficient is E{|h|2}. The term |h|2 is

|h|2 =
|g|2

(|g|2 + σ2
ν)

2
. (6.6.19)

The channel coefficient g is complex Gaussian with variance σ2
g . This implies that

ζ = |g|2 is exponentially distributed with a PDF

pζ(ζ) =
1

σ2
g

e
−ζ
σ2
g . (6.6.20)

Using this PDF, the expectation E{|h|2} can be directly evaluated using the ex-

pression

E{|h|2} =
1

σ2
g

∫ ∞
0

ζ

(ζ + σ2
ν)

2
e
−ζ
σ2
g dζ. (6.6.21)

Making a change of variable, x = ζ/σ2
ν , the integral becomes slightly cleaner,

E{|h|2} =
1

σ2
g

∫ ∞
0

x

(x+ 1)2
e−ρxdx, (6.6.22)

with ρ = σ2
ν/σ

2
g .

To evaluate this integral, integration by parts is used repeatedly. The first few
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solution steps are

E{|h|2} =
1

σ2
g

∫ ∞
0

x

(x+ 1)2
e−ρxdx

=
1

σ2
g

[
−ρ
∫ ∞

0

e−ρxdx+ ρ

∫ ∞
0

e−ρx

1 + x
dx+ ρ

∫ ∞
0

e−ρx ln(1 + x)dx

]
=

1

σ2
g

[
−1 + ρ

∫ ∞
0

e−ρx

1 + x
dx+ ρ

∫ ∞
0

e−ρx ln(1 + x)dx

]
=

1

σ2
g

[
−1 + ρ2

∫ ∞
0

e−ρx ln(1 + x)dx+ ρ

∫ ∞
0

e−ρx ln(1 + x)dx

]
=

1

σ2
g

[
−1 + ρ(1 + ρ)

∫ ∞
0

e−ρx ln(1 + x)dx

]

Another change of variable y = (1 + x) simplifies the remaining integral,

E{|h|2} =
1

σ2
g

[
−1 + ρ(1 + ρ)

∫ ∞
1

e−ρ(y−1) ln(y)dy

]
=

1

σ2
g

[
−1 + ρ(1 + ρ)eρ

∫ ∞
1

e−ρy ln(y)dy

]

One final change of variable, z = ρy and some further simplification get the

expectation into the same form given earlier,

E{|h|2} =
1

σ2
g

[
−1 + ρ(1 + ρ)eρ

∫ ∞
ρ

e−z ln

(
z

ρ

)
dz

ρ

]
=

1

σ2
g

[
−1 + (1 + ρ)eρ

∫ ∞
ρ

(
e−z ln (z)− e−z ln(ρ)

)
dz

]
=

1

σ2
g

[
−1 + (1 + ρ)eρ

∫ ∞
ρ

e−z

z
dz

]
.

6.7 Simulation results: equalizer correlation

In this section simulations results are presented that show the coherence time of

equalizer coefficients is less than the coherence time of the channel impulse-response

coefficients.
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Figure 6.7.1: The correlation of a single-coefficient Markov channel with a correlation
window of Nwin = 2400 symbols. There is a smooth transition from the channel
correlation down to a minimum correlation as the SNR increases.

6.7.1 Single-coefficient channel with Markov correlation

The first simulation presented is a one-coefficient Markov channel. In this simulation,

the sampling frequency is fs = 2400 samples per second, and the fading rate is 1/2

second (so the correlation width at 1/e is 2400 samples). The channel coefficients are

unit variance so σ2
g = 1.

Figure 6.7.1 shows the correlation function for a single coefficient channel with

the parameters as described above. The channel coefficients are shown to have a

longer correlation window than the equalizer coefficients. Perfect channel knowledge is

assumed when calculating the equalizer coefficients, so there is no channel estimation

error.

The results show that the coherence time of the equalizer coefficients in the noise

free case is much lower than the channel impulse response coefficient correlation.

Figure 6.7.1 also shows the effect of reducing the SNR. There is a transition

from the low-noise (high SNR) regime at SNR of 60 and greater to the high-noise

(low SNR) regime where the channel coefficients and the equalizer coefficients have

approximately the same correlation function.

No attempt has been made to analytically capture the transition from low SNR
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Figure 6.7.2: The correlation of a single-coefficient Gaussian channel with a corre-
lation window of Nwin = 2400 symbols. There is still a smooth transition from the
channel correlation down to a minimum correlation as the SNR increases, with a
slightly different shape than the AR(1) channel.

operating regime to the high SNR operating regime. The simulation results imply

that the coherence time of the equalizer coefficients is monotonically non-increasing

with SNR.

6.7.2 Single-coefficient channel with Gaussian correlation

Figure 6.7.2 plots the correlation function of the channel and equalizer coefficients

when the channel has a Gaussian shaped correlation function. Similar results are

observed are observed with this correlation function shape as were observed for a

Markov correlation model. At high SNR, the equalizer coefficients have a shorter

correlation time than the channel coefficients regardless of the shape of the correlation

function.

6.7.3 10-coefficient Markov Correlated channel

This sections provides simulation results which verify the claims that the multi-

coefficient equalizer is well approximated by inverting the first channel impulse re-

sponse coefficient in the noise-free regime. A 10-coefficient WSSUS channel model is

used, where each coefficient is generated independently using a Markov correlation

model. The energy in each coefficient is assumed to be equal and the direct-path is
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Figure 6.7.3: Realization of the 10-coefficient WSSUS, AR(1) channel where all co-
efficients have equal variance. The sum of the average energy of all the channel
coefficients is unity. The color indicates intensity on a linear scale.

assumed to be the first coefficient (arbitrary).

The equalizer is a DFE where perfect channel knowledge is assumed. There are 10

feed-forward coefficients and 9 feedback coefficients, so all of the precursor interference

should be canceled. With perfect channel knowledge, the equalizer can use the current

realization of the channel. Thus, the perfect channel knowledge equalizer is the MMSE

equalizer.

Figure 6.7.3 shows the complete realization of the channel and 6.7.4 shows the

equalizer coefficients calculated from the known channel impulse response realization.

This figure shows that the equalizer coefficients are dominated by the first coefficient.

Therefore, the use of a one-coefficient equalizer model for analysis is justified.

Using simulated data, the sample correlation coefficient, ρ̂CORR(g−1[n, 0], hff [n, 0]),

between the inverse of the first channel coefficient, g−1[n, 0], and the first equalizer
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Figure 6.7.4: Realization of the MMSE feedforward DFE coefficients for the channel
shown in figure 6.7.3 with no noise. Notice that the first coefficient dominates over the
others for all time. The color corresponds to magnitude and the scale is 20 log10(|h|).

coefficient, hff,[n, 0], is

ρ̂CORR(g−1[n, 0], hff [n, 0]) =
1
N

∑N
i=1(hff [i, 0]− µ̂h)∗(g−1[i, 0]− µ̂g−1)√

1
N

∑N
i=1 |hff [i, 0]− µ̂h|2 1

N

∑N
i=1 |g−1[i, 0]− µ̂g−1|2

(6.7.1)

= 0.9935 + j 0.0002

where

µ̂h =
1

N

N∑
i=1

hff [i, 0] µ̂g−1 =
1

N

N∑
i=1

g−1[i, 0]

This correlation coefficient is very close to 1, confirming that there is a high

correlation between the inverse of the first channel coefficient and the first feedforward

equalizer coefficient. The imaginary part of the correlation is nearly 0, showing that

the phases are well correlated.
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Figure 6.7.5: Correlation between the first coefficient of the equalizer and the inverse
of the first coefficient of the channel. There is a strong linear correlation between the
two. There is also many non-correlated events indicating the approximation is not
perfect.

Figure 6.7.5 shows a linear relationship between the magnitude of the first equal-

izer coefficient and the inverse of the magnitude of the first channel coefficient. There

is observable noise indicating that the equalizer coefficient is not exactly equal to the

inverse of the first channel coefficient. The high correlation coefficient indicates the

they are nearly equal and so an equality approximation is justified.

Figure 6.7.6 shows the normalized correlation function of the first equalizer coeffi-

cient for several different SNR values. At low SNR the equalizer coefficient correlation

function is equivalent to the channel impulse-response correlation function. A similar

effect was observed for the one-coefficient equalizer in the previous subsection. There

is a smooth transition from the low-noise (high SNR) regime where one-coefficient is

dominant and the correlation is low, to the high-noise (low SNR) regime where the

correlation function of the equalizer is the same as channel impulse-response corre-

lation function. The transition region for the multiple-coefficient equalizer extends

over a wider SNR range than the single-coefficient equalizer.
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Figure 6.7.6: Correlation function for the first coefficient of the channel and the first
coefficient of the equalizer for several SNR values. Notice that there is a smooth
transition from the correlation of the channel down to the 90dB. This trend continues
as the SNR continues to be increased (not shown). The transition to the no-noise
correlation levels happens at much higher SNR than for the single coefficient channel
(shown in the figure at 200dB).

To complete this discussion, the CEB and DA DFE are compared using the sim-

ulated 10-coefficient Rayleigh fading channel. Figure 6.7.7 is the MSE results using

the CEB and DA DFE algorithms.

The results show that the performance of the DA algorithm levels degrades faster

than the CEB algorithm. The reason is that the coherence time of the equalizer

coefficients is reduced as the SNR is increased, which decreases the optimal averaging

window. There is a lower limit to the averaging useful averaging window, below which

the MSE increases rapidly. The correlation of the equalizer coefficients is reduced as

the SNR increases so the equalizer coefficients are data limited at a higher SNR than

the channel coefficients. A range of exponential weighting factors were used and the

results show the weighting factor with the lowest MSE.

Note that the superior MSE performance of the CEB algorithm depends heavily

on the accuracy of the channel model. As has been shown in other chapters, when

the channel model is inaccurate, the performance of the CEB degrades markedly

compared with the DA equalizer.
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Figure 6.7.7: Comparison of the CEB and DA algorithms using a 10-coefficient
Rayleigh fading channel.

6.8 Discussion

This chapter compared the performance difference of the CEB equalizer algorithm

with the performance of the DA equalizer algorithm. At low SNR both methods have

nearly equivalent MSE performance since at low SNR the observation noise is the

dominant error term. Underwater communication systems generally operate with a

low enough SNR that the performance of the DA and CEB methods is equivalent,

so the DA methods should be considered when designing these systems since the

computational complexity of the DA method is much lower than the CEB method.

When the SNR is low, the equalizer coefficients and the channel impulse response

coefficients have the same correlation structure, so the DA and the CEB methods had

very similar MSE performance. This transition from the high-SNR to the low-SNR

regime was shown to be a transition from an operating regime where the statistics of

the received data correlation matrix are time varying to an operating regime where

the statistics are time-invariant. If the noise also had time-varying statistics, the CEB

would always outperform the DA algorithm.
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Chapter 7

Summary and conclusions

7.1 Summary of results

Equalization is a very useful communication component for overcoming ISI in a highly

time-spread channel. The underwater environment provides a particularly challenging

environment for equalization due to very long delay spreads and time variability. This

thesis looked at several aspects and improvements of the EW-DFE applied to the

underwater acoustic channel.

Several of the key results provided in this thesis include:

• The effective noise correlation matrix used in the computation of a CEB-DFE

includes off diagonal elements due to correlated channel motion. The statistics

of the channel motion are nearly time-invariant and so estimation techniques

that assume the error correlation matrix is Toeplitz both reduce computational

complexity and improve performance.

• In shallow water communication channels, the arrival angles of the multipath

components are bounded into a narrow cone of angles. Beams can be formed

which span this angular spread to capture most of the energy and do nearly as

well as adaptive beamforming but without some of the instabilities that result

from fully adaptive methods.

• The number of multipath arrivals can be estimated using either a geometric
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ray-path model when environmental data is available or using χ2 statistical

matching techniques. These techniques provide a method for determining the

number of beams that should be used for either an adaptive or non-adaptive

beamformer to both improve performance and reduce computational complexity

in a time-varying ocean environment.

• Unmodeled channel impulse response coefficients become additional noise terms

when estimating equalizer coefficients using a CEB method. This may cause a

estimated noise correlation matrix mismatch which leads to increased MSE at

the output of the DFE. Additional processing steps can be used to mitigate this

effect and improve performance.

• Channel estimate based equalization has lower MSE than direct adaptation

equalization due to lower temporal correlation of equalizer coefficients at high

SNR. As the SNR is reduced, these two methods perform equivalently. At most

practical SNR observed in experiments, the methods are practically equal, so

the DA method is preferred if computation complexity is an issue.

• A DA DFE is not sensitive to modeling errors since the parameters are all

estimated directly from the data. When environmental information is available,

however, the information can be included in the CEB-DFE framework easily

which can increase performance dramatically.

7.2 Future directions

This work suggests several directions which need further study. The first direction is to

identify a method that is more effective at estimating channel state information when

little is known about the channel except the time and delay spread of the channel.

This includes applying adaptive exponential weighting parameter techniques where

the exponential weighting factor is another parameter of the problem. There has been

some work on this in the literature, but the techniques are still crude and there is

still not a good formulation of the problem.
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In this work, the equalizer coefficients were treated as the system being estimated

(direct adaptation techniques). Much of the literature has focused on CEB tech-

niques due to the improved performance at high SNR. CEB techniques require a

reliable channel model and accurate channel assumptions to be effective. This thesis

suggests that DA techniques are valuable, especially in lower SNR ranges due to their

lower computational complexity and lack of channel assumptions in the formulation.

Further work is needed to improve DA equalizers, especially in data limited environ-

ments; adapting sparse or random matrix techniques for the DA equalizer useful.

Introducing channel knowledge into the DA equalizer to create a hybrid approach

between the CEB and DA equalizers would allow for a trade-off between performance

and complexity. When the channel state information is good, knowledge of the chan-

nel reduces error. If some channel parameter is known, such as the number of channel

coefficients or the sparsity measure of the channel, error could be reduced for the DA

equalizer. Further study is needed to determine if the decrease in error is enough to

justify the increase in computational complexity.

A alternative to recovering the channel state information after using a set model

order would be an algorithm which adaptively selects the appropriate model order.

The structure of a universal prediction filter would be an appropriate start. This

structure runs multiple filter lengths simultaneously and chooses the model order (or

combination of model orders) that produces the lowest MSE. This usually requires a

lattice filter so stability issues must be considered carefully.

To continue the work on beamforming methods, a method for including the time-

variability of the channel explicitly into the optimization problem, the adaptation

techniques, and the angle of arrival estimation will greatly improve all of these meth-

ods. For the underwater environment, this is an especially hard problem due to the

plethora channel types and causes of time-variability that are observed in the ocean.

None of the results in this thesis make any assumptions that the channel is sparse,

even though we know the UWA communications channel often is. Much work has

been done in the area of exploiting this sparseness, so combining the work from this

thesis with work from the literature would help generalize the results.
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One other large open problem not directly addressed in this thesis is how to

determine which paths and channel coefficients are useful to track. In order to make

this determination, a model which includes the estimation error as a function of the

correlation time of environmental parameters must be created. Thus far, models to

include this information are very crude and analytical results are only available for

the simplest models using base assumptions. Access to these models would allow

better optimization criterion to be formed which would lead to equalizers with better

performance.

The algorithms proposed in this thesis reduce computation and improve perfor-

mance. The improved performance at a low SNR could be used to transmit data

at or below the noise floor (especially for the array processing techniques) for covert

communication. More research is needed to apply these advances to improve com-

munication systems by reducing overall power, increasing the data rate (for a given

SNR), or both.
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